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Chapter 1

Units

1.1 Introduction

Imagine you had to make curtains and needed to buy fabric. The shop assistant would need
to know how much fabric you needed. Telling her you need fabric 2 wide and 6 long would be
insufficient — you have to specify the unit (i.e. 2 metres wide and 6 metres long). Without
the unit the information is incomplete and the shop assistant would have to guess. If you were
making curtains for a doll’s house the dimensions might be 2 centimetres wide and 6 centimetres
long!

It is not just lengths that have units, all physical quantities have units (e.g. time, temperature,
distance, etc.).

Definition: Physical Quantity
A physical quantity is anything that you can measure. For example, length, temperature,
distance and time are physical quantities.

1.2 Unit Systems

1.2.1 SI Units

We will be using the SI units in this course. SI units are the internationally agreed upon units.
Historically these units are based on the metric system which was developed in France at the
time of the French Revolution.

Definition: SI Units
The name SI units comes from the French Système International d’Unités, which means
international system of units.

There are seven base SI units. These are listed in Table 10.1. All physical quantities have units
which can be built from these seven base units. These seven units were defined to be the base
units. So, it is possible to create a different set of units by defining a different set of base units.

These seven units are called base units because none of them can be expressed as combinations
of the other six. This is identical to bricks and concrete being the base units of a building. You
can build different things using different combinations of bricks and concrete. The 26 letters of
the alphabet are the base units for a language like English. Many different words can be formed
by using these letters.
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1.3 CHAPTER 1. UNITS

Base quantity Name Symbol
length metre m
mass kilogram kg
time second s

electric current ampere A
temperature kelvin K

amount of substance mole mol
luminous intensity candela cd

Table 1.1: SI Base Units

1.2.2 The Other Systems of Units

The SI Units are not the only units available, but they are most widely used. In Science there
are three other sets of units that can also be used. These are mentioned here for interest only.

c.g.s Units

In the c.g.s. system, the metre is replaced by the centimetre and the kilogram is replaced by the
gram. This is a simple change but it means that all units derived from these two are changed.
For example, the units of force and work are different. These units are used most often in
astrophysics and atomic physics.

Imperial Units

Imperial units arose when kings and queens decided the measures that were to be used in the
land. All the imperial base units, except for the measure of time, are different to those of SI
units. This is the unit system you are most likely to encounter if SI units are not used. Examples
of imperial units are pounds, miles, gallons and yards. These units are used by the Americans
and British. As you can imagine, having different units in use from place to place makes scientific
communication very difficult. This was the motivation for adopting a set of internationally agreed
upon units.

Natural Units

This is the most sophisticated choice of units. Here the most fundamental discovered quantities
(such as the speed of light) are set equal to 1. The argument for this choice is that all other
quantities should be built from these fundamental units. This system of units is used in high
energy physics and quantum mechanics.

1.3 Writing Units as Words or Symbols

Unit names are always written with a lowercase first letter, for example, we write metre and litre.
The symbols or abbreviations of units are also written with lowercase initials, for example m for
metre and ℓ for litre. The exception to this rule is if the unit is named after a person, then the
symbol is a capital letter. For example, the kelvin was named after Lord Kelvin and its symbol is
K. If the abbreviation of the unit that is named after a person has two letters, the second letter
is lowercase, for example Hz for hertz.

Exercise: Naming of Units
For the following symbols of units that you will come across later in this book,

write whether you think the unit is named after a person or not.
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1. J (joule)

2. ℓ (litre)

3. N (newton)

4. mol (mole)

5. C (coulomb)

6. lm (lumen)

7. m (metre)

8. bar (bar)

3
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1.4 Combinations of SI Base Units

To make working with units easier, some combinations of the base units are given special names,
but it is always correct to reduce everything to the base units. Table 10.2 lists some examples
of combinations of SI base units that are assigned special names. Do not be concerned if the
formulae look unfamiliar at this stage - we will deal with each in detail in the chapters ahead (as
well as many others)!

It is very important that you are able to recognise the units correctly. For instance, the new-
ton (N) is another name for force, which is defined as kilogram metre per second squared
(kg·m·s−2), while work is measured in kilogram metre squared per second squared (kg·m2

·s−2) and is called the joule (J).

Quantity Formula
Unit Expressed in Name of

Base Units Combination
Force ma kg·m·s−2 N (newton)

Frequency 1
T

s−1 Hz (hertz)
Work F.s kg·m2 ·s−2 J (joule)

Table 1.2: Some examples of combinations of SI base units assigned special names

Important: When writing combinations of base SI units, place a dot (·) between the units
to indicate that different base units are used. For example, the symbol for metres per second
is correctly written as m·s−1, and not as ms−1 or m/s.

1.5 Rounding, Scientific Notation and Significant Figures

1.5.1 Rounding Off

Certain numbers may take an infinite amount of paper and ink to write out. Not only is
that impossible, but writing numbers out to a high accuracy (many decimal places) is very
inconvenient and rarely gives better answers. For this reason we often estimate the number to a
certain number of decimal places. Rounding off or approximating a decimal number to a given
number of decimal places is the quickest way to approximate a number. For example, if you
wanted to round-off 2,6525272 to three decimal places then you would first count three places
after the decimal.

2,652|5272

All numbers to the right of | are ignored after you determine whether the number in the third
decimal place must be rounded up or rounded down. You round up the final digit (make the
digit one more) if the first digit after the | was greater or equal to 5 and round down (leave the
digit alone) otherwise. So, since the first digit after the | is a 5, we must round up the digit in
the third decimal place to a 3 and the final answer of 2,6525272 rounded to three decimal places
is 2,653.

Worked Example 1: Rounding-off
Question: Round-off π = 3,141592654 . . . to 4 decimal places.
Answer
Step 1 : Determine the last digit that is kept and mark the cut-off
with |.
π = 3,1415|92654 . . .
Step 2 : Determine whether the last digit is rounded up or down.
The last digit of π = 3,1415|92654 . . . must be rounded up because there is
a 9 after the |.
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Step 3 : Write the final answer.
π = 3,1416 rounded to 4 decimal places.

5
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Worked Example 2: Rounding-off
Question: Round-off 9,191919 . . . to 2 decimal places
Answer
Step 1 : Determine the last digit that is kept and mark the cut-off
with |.
9,19|1919 . . .
Step 2 : Determine whether the last digit is rounded up or down.
The last digit of 9,19|1919 . . . must be rounded down because there is a 1
after the |.
Step 3 : Write the final answer.
Answer = 9,19 rounded to 2 decimal places.

1.5.2 Error Margins

In a calculation that has many steps, it is best to leave the rounding off right until the end. For
example, Jack and Jill walk to school. They walk 0,9 kilometers to get to school and it takes
them 17 minutes. We can calculate their speed in the following two ways.

Method 1 Method 2
Change 17 minutes to hours: Change 17 minutes to hours:

time = 17
60 time = 17

60
= 0,283333333 km = 0,28 km

Speed =Distance
T ime

Speed =Distance
T ime

= 0,9
0,28333333 = 0,9

0,28

= 3,176470588 = 3,214285714
3,18 km·hr−1 3,21 km·hr−1

Table 1.3: Rounding numbers

You will see that we get two different answers. In Method 1 no rounding was done, but in Method
2, the time was rounded to 2 decimal places. This made a big difference to the answer. The
answer in Method 1 is more accurate because rounded numbers were not used in the calculation.
Always round off only your final answer.

1.5.3 Scientific Notation

In Science one often needs to work with very large or very small numbers. These can be written
more easily in scientific notation, in the general form

d× 10e

where d is a decimal number between 0 and 10 that is rounded off to a few decimal places. e is
known as the exponent and is an integer. If e > 0 it represents how many times the decimal
place in d should be moved to the right. If e < 0, then it represents how many times the decimal
place in d should be moved to the left. For example 3,24 × 103 represents 3240 (the decimal
moved three places to the right) and 3,24× 10−3 represents 0,00324 (the decimal moved three
places to the left).

If a number must be converted into scientific notation, we need to work out how many times
the number must be multiplied or divided by 10 to make it into a number between 1 and 10
(i.e. the value of e) and what this number between 1 and 10 is (the value of d). We do this by
counting the number of decimal places the decimal comma must move.

For example, write the speed of light in scientific notation, to two decimal places. The speed of
light is 299 792 458 m·s−1. First, find where the decimal comma must go for two decimal places
(to find d) and then count how many places there are after the decimal comma to determine e.

6
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In this example, the decimal comma must go after the first 2, but since the number after the
second 9 is 7, d = 3,00. e = 8 because there are 8 digits left after the decimal comma. So the
speed of light in scientific notation, to two decimal places is 3,00 × 108 m·s−1.

7



1.6 CHAPTER 1. UNITS

1.5.4 Significant Figures

In a number, each non-zero digit is a significant figure. Zeroes are only counted if they are
between two non-zero digits or are at the end of the decimal part. For example, the number
2000 has 1 significant figure (the 2), but 2000,0 has 5 significant figures. You estimate a number
like this by removing significant figures from the number (starting from the right) until you have
the desired number of significant figures, rounding as you go. For example 6,827 has 4 significant
figures, but if you wish to write it to 3 significant figures it would mean removing the 7 and
rounding up, so it would be 6,83.

Exercise: Using Significant Figures

1. Round the following numbers:

(a) 123,517 ℓ to 2 decimal places

(b) 14,328 km·h−1 to one decimal place

(c) 0,00954 m to 3 decimal places

2. Write the following quantities in scientific notation:

(a) 10130 Pa to 2 decimal places

(b) 978,15 m·s−2 to one decimal place

(c) 0,000001256 A to 3 decimal places

3. Count how many significant figures each of the quantities below has:

(a) 2,590 km

(b) 12,305 mℓ

(c) 7800 kg

1.6 Prefixes of Base Units

Now that you know how to write numbers in scientific notation, another important aspect of
units is the prefixes that are used with the units.

Definition: Prefix
A prefix is a group of letters that are placed in front of a word. The effect of the prefix is to
change meaning of the word. For example, the prefix un is often added to a word to mean
not, as in unnecessary which means not necessary.

In the case of units, the prefixes have a special use. The kilogram (kg) is a simple example.
1 kg is equal to 1 000 g or 1× 103 g. Grouping the 103 and the g together we can replace the
103 with the prefix k (kilo). Therefore the k takes the place of the 103.
The kilogram is unique in that it is the only SI base unit containing a prefix.

In Science, all the prefixes used with units are some power of 10. Table 10.4 lists some of
these prefixes. You will not use most of these prefixes, but those prefixes listed in bold should
be learnt. The case of the prefix symbol is very important. Where a letter features twice in the
table, it is written in uppercase for exponents bigger than one and in lowercase for exponents
less than one. For example M means mega (106) and m means milli (10−3).
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Prefix Symbol Exponent Prefix Symbol Exponent
yotta Y 1024 yocto y 10−24

zetta Z 1021 zepto z 10−21

exa E 1018 atto a 10−18

peta P 1015 femto f 10−15

tera T 1012 pico p 10−12

giga G 109 nano n 10−9

mega M 106 micro µ 10−6

kilo k 103 milli m 10−3

hecto h 102 centi c 10−2

deca da 101 deci d 10−1

Table 1.4: Unit Prefixes

Important: There is no space and no dot between the prefix and the symbol for the unit.

Here are some examples of the use of prefixes:

• 40000 m can be written as 40 km (kilometre)

• 0,001 g is the same as 1× 10−3 g and can be written as 1 mg (milligram)

• 2,5× 106 N can be written as 2,5 MN (meganewton)

• 250000 A can be written as 250 kA (kiloampere) or 0,250 MA (megaampere)

• 0,000000075 s can be written as 75 ns (nanoseconds)

• 3×10−7 mol can be rewritten as 0,3×10−6 mol, which is the same as 0,3 µmol (micromol)

Exercise: Using Scientific Notation

1. Write the following in scientific notation using Table 10.4 as a reference.

(a) 0,511 MV

(b) 10 cℓ

(c) 0,5 µm

(d) 250 nm

(e) 0,00035 hg

2. Write the following using the prefixes in Table 10.4.

(a) 1,602 ×10−19 C

(b) 1,992 ×106 J

(c) 5,98 ×104 N

(d) 25 ×10−4 A

(e) 0,0075 ×106 m
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1.7 The Importance of Units

Without units much of our work as scientists would be meaningless. We need to express our
thoughts clearly and units give meaning to the numbers we measure and calculate. Depending
on which units we use, the numbers are different. For example if you have 12 water, it means
nothing. You could have 12 ml of water, 12 litres of water, or even 12 bottles of water. Units
are an essential part of the language we use. Units must be specified when expressing physical
quantities. Imagine that you are baking a cake, but the units, like grams and millilitres, for the
flour, milk, sugar and baking powder are not specified!

Activity :: Investigation : Importance of Units
Work in groups of 5 to discuss other possible situations where using the incorrect

set of units can be to your disadvantage or even dangerous. Look for examples at
home, at school, at a hospital, when travelling and in a shop.

Activity :: Case Study : The importance of units
Read the following extract from CNN News 30 September 1999 and answer the

questions below.
NASA: Human error caused loss of Mars orbiter November 10, 1999
Failure to convert English measures to metric values caused the loss of the Mars

Climate Orbiter, a spacecraft that smashed into the planet instead of reaching a safe
orbit, a NASA investigation concluded Wednesday.

The Mars Climate Orbiter, a key craft in the space agency’s exploration of the
red planet, vanished on 23 September after a 10 month journey. It is believed that
the craft came dangerously close to the atmosphere of Mars, where it presumably
burned and broke into pieces.

An investigation board concluded that NASA engineers failed to convert English
measures of rocket thrusts to newton, a metric system measuring rocket force. One
English pound of force equals 4,45 newtons. A small difference between the two
values caused the spacecraft to approach Mars at too low an altitude and the craft
is thought to have smashed into the planet’s atmosphere and was destroyed.

The spacecraft was to be a key part of the exploration of the planet. From its
station about the red planet, the Mars Climate Orbiter was to relay signals from the
Mars Polar Lander, which is scheduled to touch down on Mars next month.

“The root cause of the loss of the spacecraft was a failed translation of English
units into metric units and a segment of ground-based, navigation-related mission
software,” said Arthus Stephenson, chairman of the investigation board.

Questions:

1. Why did the Mars Climate Orbiter crash? Answer in your own words.

2. How could this have been avoided?

3. Why was the Mars Orbiter sent to Mars?

4. Do you think space exploration is important? Explain your answer.

1.8 How to Change Units

It is very important that you are aware that different systems of units exist. Furthermore, you
must be able to convert between units. Being able to change between units (for example,
converting from millimetres to metres) is a useful skill in Science.
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The following conversion diagrams will help you change from one unit to another.

mm m km

÷1000 ÷1000

×1000 ×1000

Figure 1.1: The distance conversion table

If you want to change millimetre to metre, you divide by 1000 (follow the arrow from mm to m);
or if you want to change kilometre to millimetre, you multiply by 1000×1000.

The same method can be used to change millilitre to litre or kilolitre. Use figure 10.2 to
change volumes:

mℓ ℓ kℓ

÷1000 ÷1000

×1000 ×1000

cm3 dm3 m3

Figure 1.2: The volume conversion table

Worked Example 3: Conversion 1
Question: Express 3 800 mm in metres.
Answer
Step 1 : Find the two units on the conversion diagram.
Use Figure 10.1 . Millimetre is on the left and metre in the middle.

Step 2 : Decide whether you are moving to the left or to the right.
You need to go from mm to m, so you are moving from left to right.

Step 3 : Read from the diagram what you must do and find the
answer.
3 800 mm ÷ 1000 = 3,8 m

Worked Example 4: Conversion 2
Question: Convert 4,56 kg to g.
Answer
Step 1 : Find the two units on the conversion diagram.
Use Figure 10.1. Kilogram is the same as kilometre and gram the same as
metre.

Step 2 : Decide whether you are moving to the left or to the right.
You need to go from kg to g, so it is from right to left.

Step 3 : Read from the diagram what you must do and find the
answer.
4,56 kg × 1000 = 4560 g
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1.8.1 Two other useful conversions

Very often in Science you need to convert speed and temperature. The following two rules will
help you do this:

Converting speed
When converting km·h−1 to m·s−1you divide by 3,6. For example 72 km·h−1 ÷ 3,6 = 20 m·s−1.

When converting m·s−1to km·h−1, you multiply by 3,6. For example 30 m·s−1×3,6 = 108 km·h−1.

Converting temperature
Converting between the kelvin and celsius temperature scales is easy. To convert from celsius
to kelvin add 273. To convert from kelvin to celsius subtract 273. Representing the kelvin
temperature by TK and the celsius temperature by ToC ,

TK = ToC + 273

1.9 A sanity test

A sanity test is a method of checking whether an answer makes sense. All we have to do is to
take a careful look at our answer and ask the question Does the answer make sense?

Imagine you were calculating the number of people in a classroom. If the answer you got was
1 000 000 people you would know it was wrong — it is not possible to have that many people
in a classroom. That is all a sanity test is — is your answer insane or not?

It is useful to have an idea of some numbers before we start. For example, let us consider masses.
An average person has a mass around 70 kg, while the heaviest person in medical history had a
mass of 635 kg. If you ever have to calculate a person’s mass and you get 7 000 kg, this should
fail your sanity check — your answer is insane and you must have made a mistake somewhere.
In the same way an answer of 0.01 kg should fail your sanity test.

The only problem with a sanity check is that you must know what typical values for things are.
For example, finding the number of learners in a classroom you need to know that there are
usually 20–50 people in a classroom. If you get and answer of 2500, you should realise that it is
wrong.

Activity :: The scale of the matter... : Try to get an idea of the typical
values for the following physical quantities and write your answers into the
table:

Category Quantity Minimum Maximum

People
mass
height

Transport

speed of cars on freeways
speed of trains
speed of aeroplanes
distance between home and school

General
thickness of a sheet of paper
height of a doorway

1.10 Summary

1. You need to know the seven base SI Units as listed in table 10.1. Combinations of SI Units
can have different names.
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2. Unit names and abbreviations are written with lowercase letter unless it is named after a
person.

3. Rounding numbers and using scientific notation is important.

4. Table 10.4 summarises the prefixes used in Science.

5. Use figures 10.1 and 10.2 to convert between units.
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1.11 End of Chapter Exercises

1. Write down the SI unit for the each of the following quantities:

(a) length

(b) time

(c) mass

(d) quantity of matter

(4)

2. For each of the following units, write down the symbol and what power of 10 it represents:

(a) millimetre

(b) centimetre

(c) metre

(d) kilometre

(4)

3. For each of the following symbols, write out the unit in full and write what power of 10 it
represents:

(a) µg

(b) mg

(c) kg

(d) Mg

(4)

4. Write each of the following in scientific notation, correct to 2 decimal places:

(a) 0,00000123 N

(b) 417 000 000 kg

(c) 246800 A

(d) 0,00088 mm

(4)

5. Rewrite each of the following, using the correct prefix uisng 2 decimal places where appli-
cable:

(a) 0,00000123 N

(b) 417 000 000 kg

(c) 246800 A

(d) 0,00088 mm

(4)

6. For each of the following, write the measurement using the correct symbol for the prefix
and the base unit:

(a) 1,01 microseconds

(b) 1 000 milligrams

(c) 7,2 megameters

(d) 11 nanolitre

(4)

7. The Concorde is a type of aeroplane that flies very fast. The top speed of the Concorde is
844 km·hr−1. Convert the Concorde’s top speed to m·s−1.

(3)

8. The boiling point of water is 100 ◦C. What is the boiling point of water in kelvin?

(3)

Total = 30
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Chapter 2

Classification of Matter - Grade 10

All the objects that we see in the world around us, are made of matter. Matter makes up the
air we breathe, the ground we walk on, the food we eat and the animals and plants that live
around us. Even our own human bodies are made of matter!

Different objects can be made of different types of matter, or materials. For example, a cup-
board (an object) is made of wood, nails and hinges (the materials). The properties of the
materials will affect the properties of the object. In the example of the cupboard, the strength
of the wood and metals make the cupboard strong and durable. In the same way, the raincoats
that you wear during bad weather, are made of a material that is waterproof. The electrical wires
in your home are made of metal because metals are a type of material that is able to conduct
electricity. It is very important to understand the properties of materials, so that we can use
them in our homes, in industry and in other applications. In this chapter, we will be looking at
different types of materials and their properties.

The diagram below shows one way in which matter can be classified (grouped) according to
its different properties. As you read further in this chapter, you will see that there are also
other ways of classifying materials, for example according to whether they are good electrical
conductors.

MATTER

MIXTURES PURE SUBSTANCES

Homogeneous Heterogeneous CompoundsElements

Metals Non-metals

Magnetic Non-magnetic

Figure 2.1: The classification of matter

2.1 Mixtures

We see mixtures all the time in our everyday lives. A stew, for example, is a mixture of different
foods such as meat and vegetables; sea water is a mixture of water, salt and other substances,
and air is a mixture of gases such as carbon dioxide, oxygen and nitrogen.
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Definition: Mixture
A mixture is a combination of more than one substance, where these substances are not
bonded to each other.

In a mixture, the substances that make up the mixture:

• are not in a fixed ratio

Imagine, for example, that you have a 250 ml beaker of water. It doesn’t matter whether
you add 20 g, 40 g, 100 g or any other mass of sand to the water; it will still be called a
mixture of sand and water.

• keep their physical properties

In the example we used of the sand and water, neither of these substances has changed in
any way when they are mixed together. Even though the sand is in water, it still has the
same properties as when it was out of the water.

• can be separated by mechanical means

To separate something by ’mechanical means’, means that there is no chemical process
involved. In our sand and water example, it is possible to separate the mixture by simply
pouring the water through a filter. Something physical is done to the mixture, rather than
something chemical.

Some other examples of mixtures include blood (a mixture of blood cells, platelets and plasma),
steel (a mixture of iron and other materials) and the gold that is used to make jewellery. The
gold in jewellery is not pure gold but is a mixture of metals. The carat of the gold gives an idea
of how much gold is in the item.

We can group mixtures further by dividing them into those that are heterogeneous and those
that are homogeneous.

2.1.1 Heterogeneous mixtures

A heterogeneous mixture does not have a definite composition. Think of a pizza, that is a
mixture of cheese, tomato, mushrooms and peppers. Each slice will probably be slightly different
from the next because the toppings like the mushrooms and peppers are not evenly distributed.
Another example would be granite, a type of rock. Granite is made up of lots of different mineral
substances including quartz and feldspar. But these minerals are not spread evenly through the
rock and so some parts of the rock may have more quartz than others. Another example is
a mixture of oil and water. Although you may add one substance to the other, they will stay
separate in the mixture. We say that these heterogeneous mixtures are non-uniform, in other
words they are not exactly the same throughout.

Definition: Heterogeneous mixture
A heterogeneous mixture is one that is non-uniform, and where the different components
of the mixture can be seen.

2.1.2 Homogeneous mixtures

A homogeneous mixture has a definite composition, and specific properties. In a homogeneous
mixture, the different parts cannot be seen. A solution of salt dissolved in water is an example
of a homogeneous mixture. When the salt dissolves, it will spread evenly through the water so
that all parts of the solution are the same, and you can no longer see the salt as being separate
from the water. Think also of a powdered drink that you mix with water. Provided you give the
container a good shake after you have added the powder to the water, the drink will have the
same sweet taste for anyone who drinks it, it won’t matter whether they take a sip from the top
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or from the bottom. The air we breathe is another example of a homogeneous mixture since it is
made up of different gases which are in a constant ratio, and which can’t be distinguished from
each other.

Definition: Homogeneous mixture
A homogeneous mixture is one that is uniform, and where the different components of the
mixture cannot be seen.

An alloy is a homogeneous mixture of two or more elements, at least one of which is a metal,
where the resulting material has metallic properties. Alloys are usually made to improve on the
properties of the elements that make them up. Steel for example, is much stronger than iron,
which is its main component.

2.1.3 Separating mixtures

Sometimes it is important to be able to separate a mixture. There are lots of different ways to
do this. These are some examples:

• Filtration

A piece of filter paper in a funnel can be used to separate a mixture of sand and water.

• Heating / evaporation

Sometimes, heating a solution causes the water to evaporate, leaving the other part of the
mixture behind. You can try this using a salt solution.

• Centrifugation

This is a laboratory process which uses the centrifugal force of spinning objects to separate
out the heavier substances from a mixture. This process is used to separate the cells and
plasma in blood. When the test tubes that hold the blood are spun round in the machine,
the heavier cells sink to the bottom of the test tube. Can you think of a reason why it
might be important to have a way of separating blood in this way?

• Dialysis

This is an interesting way of separating a mixture because it can be used in some important
applications. Dialysis works using a process called diffusion. Diffusion takes place when
one substance in a mixture moves from an area where it has a high concentration to an
area where its concentration is lower. When this movement takes place across a semi-
permeable membrane it is called osmosis. A semi-permeable membrane is a barrier that
lets some things move across it, but not others. This process is very important for people
whose kidneys are not functioning properly, an illness called renal failure.

Interesting

Fact

teresting

Fact
Normally, healthy kidneys remove waste products from the blood. When a person
has renal failure, their kidneys cannot do this any more, and this can be life-
threatening. Using dialysis, the blood of the patient flows on one side of a
semi-permeable membrane. On the other side there will be a fluid that has no
waste products but lots of other important substances such as potassium ions
(K+) that the person will need. Waste products from the blood diffuse from
where their concentration is high (i.e. in the person’s blood) into the ’clean’
fluid on the other side of the membrane. The potassium ions will move in the
opposite direction from the fluid into the blood. Through this process, waste
products are taken out of the blood so that the person stays healthy.
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Activity :: Investigation : The separation of a salt solution
Aim:
To demonstrate that a homogeneous salt solution can be separated using physical

methods.
Apparatus:
glass beaker, salt, water, retort stand, bunsen burner.
Method:

1. Pour a small amount of water (about 20 ml) into a beaker.

2. Measure a teaspoon of salt and pour this into the water.

3. Stir until the salt dissolves completely. This is now called a salt solution. This
salt solution is a homogeneous mixture.

4. Place the beaker on a retort stand over a bunsen burner and heat gently. You
should increase the heat until the water almost boils.

5. Watch the beaker until all the water has evaporated. What do you see in the
beaker?

salt
solution

H2O

stand

bunsen
burner

water evaporates
when the solution
is heated

salt crystals
remain at the
bottom of the beaker

Results:
The water evaporates from the beaker and tiny grains of salt remain at the

bottom.
Conclusion:
The sodium chloride solution, which was a homogeneous mixture of salt and

water, has been separated using heating and evaporation.

Activity :: Discussion : Separating mixtures
Work in groups of 3-4
Imagine that you have been given a container which holds a mixture of sand,

iron filings (small pieces of iron metal), salt and small stones of different sizes. Is
this a homogeneous or a heterogeneous mixture? In your group, discuss how you
would go about separating this mixture into the four materials that it contains.
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Exercise: Mixtures

1. Which of the following subtances are mixtures?

(a) tap water

(b) brass (an alloy of copper and zinc)

(c) concrete

(d) aluminium

(e) Coca cola

(f) distilled water

2. In each of the examples above, say whether the mixture is homogeneous or
heterogeneous

2.2 Pure Substances: Elements and Compounds

Any material that is not a mixture, is called a pure substance. Pure substances include elements
and compounds. It is much more difficult to break down pure substances into their parts, and
complex chemical methods are needed to do this.

2.2.1 Elements

An element is a chemical substance that can’t be divided or changed into other chemical
substances by any ordinary chemical means. The smallest unit of an element is the atom.

Definition: Element
An element is a substance that cannot be broken down into other substances through
chemical means.

There are 112 officially named elements and about 117 known elements. Most of these are
natural, but some are man-made. The elements we know are represented in the Periodic Table
of the Elements, where each element is abbreviated to a chemical symbol. Examples of
elements are magnesium (Mg), hydrogen (H), oxygen (O) and carbon (C). On the Periodic
Table you will notice that some of the abbreviations do not seem to match the elements they
represent. The element iron, for example, has the chemical formula Fe. This is because the
elements were originally given Latin names. Iron has the abbreviation Fe because its Latin name
is ’ferrum’. In the same way, sodium’s Latin name is ’natrium’ (Na) and gold’s is ’aurum’ (Au).

2.2.2 Compounds

A compound is a chemical substance that forms when two or more elements combine in a fixed
ratio. Water (H2O), for example, is a compound that is made up of two hydrogen atoms for
every one oxygen atom. Sodium chloride (NaCl) is a compound made up of one sodium atom
for every chlorine atom. An important characteristic of a compound is that it has a chemical
formula, which describes the ratio in which the atoms of each element in the compound occur.

Definition: Compound
A substance made up of two or more elements that are joined together in a fixed ratio.

Diagram 2.2 might help you to understand the difference between the terms element, mixture
and compound. Iron (Fe) and sulfur (S) are two elements. When they are added together, they
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S
Fe

S

Fe

S

F
e

S

S
Fe

Fe

Fe

S

An atom
of the ele-
ment iron
(Fe)

An atom
of the el-
ement sul-
fur (S)

A mixture of iron and sulfur

Fe
S

Fe
S

F
e

S

Fe
S

FeS

Fe
S

The compound iron sulfide
(FeS)

Figure 2.2: Understanding the difference between a mixture and a compound

form a mixture or iron and sulfur. The iron and sulfur are not joined together. However, if
the mixture is heated, a new compound is formed, which is called iron sulfide (FeS). In this
compound, the iron and sulfur are joined to each other in a ratio of 1:1. In other words, one
atom of iron is joined to one atom of sulfur in the compound iron sulfide.

Exercise: Elements, mixtures and compounds

1. In the following table, tick whether each of the substances listed is a mixture
or a pure substance. If it is a mixture, also say whether it is a homogeneous or
heterogeneous mixture.

Substance Mixture or pure Homogeneous or
heterogeneous
mixture

fizzy colddrink
steel
oxygen
iron filings
smoke
limestone (CaCO3)

2. In each of the following cases, say whether the substance is an element, a
mixture or a compound.

(a) Cu

(b) iron and sulfur

(c) Al

(d) H2SO4

(e) SO3

2.3 Giving names and formulae to substances

It is easy to describe elements and mixtures. But how are compounds named? In the example
of iron sulfide that was used earlier, which element is named first, and which ’ending’ is given
to the compound name (in this case, the ending is -ide)?

The following are some guidelines for naming compounds:
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1. The compound name will always include the names of the elements that are part of it.

• A compound of iron (Fe) and sulfur (S) is iron sulf ide (FeS)

• A compound of potassium (K) and bromine (Br) is potassium bromide (KBr)

• A compound of sodium (Na) and chlorine (Cl) is sodium chlor ide (NaCl)

2. In a compound, the element that is on the left of the Periodic Table, is used first when
naming the compound. In the example of NaCl, sodium is a group 1 element on the left
hand side of the table, while chlorine is in group 7 on the right of the table. Sodium
therefore comes first in the compound name. The same is true for FeS and KBr.

3. The symbols of the elements can be used to represent compounds e.g. FeS, NaCl and
KBr. These are called chemical formulae. In these three examples, the ratio of the
elements in each compound is 1:1. So, for FeS, there is one atom of iron for every atom
of sulfur in the compound.

4. A compound may contain compound ions. An ion is an atom that has lost (positive ion)
or gained (negative ion) electrons. Some of the more common compound ions and their
names are shown below.

Name of compound ion formula
Carbonate CO3

2−

Sulfate SO4
2−

Hydroxide OH−

Ammonium NH4
+

Nitrate NO3
−

Hydrogen carbonate HCO3
−

Phosphate PO4
3−

Chlorate ClO3
−

Cyanide CN−

Chromate CrO4
2−

Permanganate MnO4
−

5. When there are only two elements in the compound, the compound is often given a suffix
(ending) of -ide. You would have seen this in some of the examples we have used so far.
For compound ions, when a non-metal is combined with oxygen to form a negative ion
(anion) which then combines with a positive ion (cation) from hydrogen or a metal, then
the suffix of the name will be ...ate or ...ite. NO−

3 for example, is a negative ion, which
may combine with a cation such as hydrogen (HNO3) or a metal like potassium (KNO3).
The NO−

3 anion has the name nitrate. SO2−
3 in a formula is sulphite, e.g. sodium sulfite

(Na2SO3). SO
2−
4 is sulfate and PO3−

4 is phosphate.

6. Prefixes can be used to describe the ratio of the elements that are in the compound. You
should know the following prefixes: ’mono’ (one), ’di’ (two) and ’tri’ (three).

• CO (carbon monoxide) - There is one atom of oxygen for every one atom of carbon

• NO2 (nitrogen dioxide) - There are two atoms of oxygen for every one atom of
nitrogen

• SO3 (sulfur trioxide) - There are three atoms of oxygen for every one atom of sulfur

Important:
When numbers are written as ’subscripts’ in compounds (i.e. they are written below the
element symbol), this tells us how many atoms of that element there are in relation to other
elements in the compound. For example in nitrogen dioxide (NO2) there are two oxygen
atoms for every one atom of nitrogen. In sulfur trioxide (SO3), there are three oxygen atoms
for every one atom of sulfur in the compound. Later, when we start looking at chemical
equations, you will notice that sometimes there are numbers before the compound name.
For example, 2H2O means that there are two molecules of water, and that in each molecule
there are two hydrogen atoms for every one oxygen atom.
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Exercise: Naming compounds

1. The formula for calcium carbonate is CaCO3.

(a) Is calcium carbonate a mixture or a compound? Give a reason for your
answer.

(b) What is the ratio of Ca:C:O atoms in the formula?

2. Give the name of each of the following substances.

(a) KBr

(b) HCl

(c) KMnO4

(d) NO2

(e) NH4OH

(f) Na2SO4

3. Give the chemical formula for each of the following compounds.

(a) potassium nitrate

(b) sodium iodide

(c) barium sulfate

(d) nitrogen dioxide

(e) sodium monosulfate

4. Refer to the diagram below, showing sodium chloride and water, and then
answer the questions that follow.

(a) What is the chemical formula for water?

(b) What is the chemical formula for sodium chloride?

(c) Label the water and sodium chloride in the diagram.

(d) Which of the following statements most accurately describes the picture?

i. The picture shows a mixture of an element and a compound

ii. The picture shows a mixture of two compounds

iii. The picture shows two compounds that have been chemically bonded
to each other

5. What is the formula of this molecule?

H C C O H

H

H

H

H

A C6H2O

B C2H6O

C 2C6HO

D 2CH6O
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2.4 Metals, Semi-metals and Non-metals

The elements in the Periodic Table can also be divided according to whether they are metals,
semi-metals or non-metals. On the right hand side of the Periodic Table is a dark ’zigzag’ line.
This line separates all the elements that are metals from those that are non-metals. Metals are
found on the left of the line, and non-metals are those on the right. Metals, semi-metals and
non-metals all have their own specific properties.

2.4.1 Metals

Examples of metals include copper (Cu), zinc (Zn), gold (Au) and silver (Ag). On the Periodic
Table, the metals are on the left of the zig-zag line. There are a large number of elements that
are metals. The following are some of the properties of metals:

• Thermal conductors

Metals are good conductors of heat and are therefore used in cooking utensils such as pots
and pans.

• Electrical conductors

Metals are good conductors of electricity, and are therefore used in electrical conducting
wires.

• Shiny metallic lustre

Metals have a characteristic shiny appearance and are often used to make jewellery.

• Malleable

This means that they can be bent into shape without breaking.

• Ductile

Metals (such as copper) can stretched into thin wires, which can then be used to conduct
electricity.

• Melting point

Metals usually have a high melting point and can therefore be used to make cooking pots
and other equipment that needs to become very hot, without being damaged.

You can see how the properties of metals make them very useful in certain applications.

Activity :: Group Work : Looking at metals

1. Collect a number of metal items from your home or school. Some examples
are listed below:

• hammer

• wire

• cooking pots

• jewellery

• burglar bars

• coins

2. In groups of 3-4, combine your collection of metal objects.

3. What is the function of each of these objects?

4. Discuss why you think metal was used to make each object. You should consider
the properties of metals when you answer this question.
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2.4.2 Non-metals

In contrast to metals, non-metals are poor thermal conductors, good electrical insulators (mean-
ing that they do not conduct electrical charge) and are neither malleable nor ductile. The
non-metals are found on the right hand side of the Periodic Table, and include elements such as
sulfur (S), phosphorus (P), nitrogen (N) and oxygen (O).

2.4.3 Semi-metals

Semi-metals have mostly non-metallic properties. One of their distinguishing characteristics is
that their conductivity increases as their temperature increases. This is the opposite of what
happens in metals. The semi-metals include elements such as silicon (Si) and germanium (Ge).
Notice where these elements are positioned in the Periodic Table.

2.5 Electrical conductors, semi-conductors and insulators

An electrical conductor is a substance that allows an electrical current to pass through it.
Many electrical conductors are metals, but non-metals can also be good conductors. Copper is
one of the best electrical conductors, and this is why it is used to make conducting wire. In
reality, silver actually has an even higher electrical conductivity than copper, but because silver
is so expensive, it is not practical to use it for electrical wiring because such large amounts are
needed. In the overhead power lines that we see above us, aluminium is used. The aluminium
usually surrounds a steel core which adds tensile strength to the metal so that it doesn’t break
when it is stretched across distances. Occasionally gold is used to make wire, not because it is
a particularly good conductor, but because it is very resistant to surface corrosion. Corrosion is
when a material starts to deteriorate at the surface because of its reactions with the surround-
ings, for example oxygen and water in the air.

An insulator is a non-conducting material that does not carry any charge. Examples of insulators
would be plastic and wood. Do you understand now why electrical wires are normally covered
with plastic insulation? Semi-conductors behave like insulators when they are cold, and like
conductors when they are hot. The elements silicon and germanium are examples of semi-
conductors.

Definition: Conductors and insulators
A conductor allows the easy movement or flow of something such as heat or electrical charge
through it. Insulators are the opposite to conductors because they inhibit or reduce the flow
of heat, electrical charge, sound etc through them.

Activity :: Experiment : Electrical conductivity
Aim:
To investigate the electrical conductivity of a number of substances
Apparatus:

• two or three cells

• light bulb

• crocodile clips

• wire leads

• a selection of test substances (e.g. a piece of plastic, aluminium can, metal
pencil sharpener, metal magnet, wood, chalk).
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lig
h
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battery

test substance

X
crocodile clip

Method:

1. Set up the circuit as shown above, so that the test substance is held between
the two crocodile clips. The wire leads should be connected to the cells and
the light bulb should also be connected into the circuit.

2. Place the test substances one by one between the crocodile clips and see what
happens to the light bulb.

Results:

Record your results in the table below:

Test substance Metal/non-metal Does bulb
glow?

Conductor or
insulator

Conclusions:

In the substances that were tested, the metals were able to conduct electricity
and the non-metals were not. Metals are good electrical conductors and non-metals
are not.

2.6 Thermal Conductors and Insulators

A thermal conductor is a material that allows energy in the form of heat, to be transferred
within the material, without any movement of the material itself. An easy way to understand
this concept is through a simple demonstration.

Activity :: Demonstration : Thermal conductivity
Aim:
To demonstrate the ability of different substances to conduct heat.
Apparatus:
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You will need two cups (made from the same material e.g. plastic); a metal
spoon and a plastic spoon.

Method:

• Pour boiling water into the two cups so that they are about half full.

• At the same time, place a metal spoon into one cup and a plastic spoon in the
other.

• Note which spoon heats up more quickly

Results:
The metal spoon heats up more quickly than the plastic spoon. In other words,

the metal conducts heat well, but the plastic does not.
Conclusion:
Metal is a good thermal conductor, while plastic is a poor thermal conductor.

This explains why cooking pots are metal, but their handles are often plastic or
wooden. The pot itself must be metal so that heat from the cooking surface can
heat up the pot to cook the food inside it, but the handle is made from a poor
thermal conductor so that the heat does not burn the hand of the person who is
cooking.

An insulator is a material that does not allow a transfer of electricity or energy. Materials that
are poor thermal conductors can also be described as being good insulators.

Interesting

Fact

teresting

Fact
Water is a better thermal conductor than air and conducts heat away from the
body about 20 times more efficiently than air. A person who is not wearing
a wetsuit, will lose heat very quickly to the water around them and can be
vulnerable to hypothermia. Wetsuits help to preserve body heat by trapping a
layer of water against the skin. This water is then warmed by body heat and acts
as an insulator. Wetsuits are made out of closed-cell, foam neoprene. Neoprene
is a synthetic rubber that contains small bubbles of nitrogen gas when made for
use as wetsuit material. Nitrogen gas has very low thermal conductivity, so it
does not allow heat from the body (or the water trapped between the body and
the wetsuit) to be lost to the water outside of the wetsuit. In this way a person
in a wetsuit is able to keep their body temperature much higher than they would
otherwise.

Activity :: Investigation : A closer look at thermal conductivity
Look at the table below, which shows the thermal conductivity of a number

of different materials, and then answer the questions that follow. The higher the
number in the second column, the better the material is at conducting heat (i.e. it is
a good thermal conductor). Remember that a material that conducts heat efficiently,
will also lose heat more quickly than an insulating material.

28



CHAPTER 2. CLASSIFICATION OF MATTER - GRADE 10 2.7

Material Thermal Conductivity (W/m/K)
Silver 429
Stainless steel 16
Standard glass 1.05
Concrete 0.9 - 2
Red brick 0.69
Water 0.58
Snow 0.25 - 0.5
Wood 0.04 - 0.12
Polystyrene 0.03
Air 0.024

Use this information to answer the following questions:

1. Name two materials that are good thermal conductors.

2. Name two materials that are good insulators.

3. Explain why:

(a) cooler boxes are often made of polystyrene

(b) homes that are made from wood need less internal heating during the
winter months.

(c) igloos (homes made from snow) are so good at maintaining warm temper-
atures, even in freezing conditions.

Interesting

Fact

teresting

Fact
It is a known fact that well-insulated buildings need less energy for heating than
do buildings that have no insulation. Two building materials that are being used
more and more worldwide, are mineral wool and polystyrene. Mineral wool
is a good insulator because it holds air still in the matrix of the wool so that
heat is not lost. Since air is a poor conductor and a good insulator, this helps
to keep energy within the building. Polystyrene is also a good insulator and is
able to keep cool things cool and hot things hot! It has the added advantage of
being resistant to moisture, mould and mildew.

Remember that concepts such as conductivity and insulation are not only relevant in the building,
industrial and home environments. Think for example of the layer of blubber or fat that we find
in animals. In very cold environments, fat and blubber not only provide protection, but also act
as an insulator to help the animal to keep its body temperature at the right level. This is known
as thermoregulation.

2.7 Magnetic and Non-magnetic Materials

We have now looked at a number of ways in which matter can be grouped, such as into metals,
semi-metals and non-metals; electrical conductors and insulators, and thermal conductors and
insulators. One way in which we can further group metals, is to divide them into those that are
magnetic and those that are non-magnetic.

Definition: Magnetism
Magnetism is one of the phenomena by which materials exert attractive or repulsive forces
on other materials.
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A metal is said to be ferromagnetic if it can be magnetised (i.e. made into a magnet). If you
hold a magnet very close to a metal object, it may happen that its own electrical field will be
induced and the object becomes magnetic. Some metals keep their magnetism for longer than
others. Look at iron and steel for example. Iron loses its magnetism quite quickly if it is taken
away from the magnet. Steel on the other hand will stay magnetic for a longer time. Steel is
often used to make permanent magnets that can be used for a variety of purposes.

Magnets are used to sort the metals in a scrap yard, in compasses to find direction, in the mag-
netic strips of video tapes and ATM cards where information must be stored, in computers and
TV’s, as well as in generators and electric motors.

Activity :: Investigation : Magnetism
You can test whether an object is magnetic or not by holding another magnet

close to it. If the object is attracted to the magnet, then it too is magnetic.
Find some objects in your classroom or your home and test whether they are

magnetic or not. Then complete the table below:

Object Magnetic or non-
magnetic

Activity :: Group Discussion : Properties of materials
In groups of 4-5, discuss how our knowledge of the properties of materials has

allowed society to:

• develop advanced computer technology

• provide homes with electricity

• find ways to conserve energy

2.8 Summary

• All the objects and substances that we see in the world are made of matter.

• This matter can be classified according to whether it is a mixture or a pure substance.

• A mixture is a combination of one or more substances that are not chemically bonded
to each other. Examples of mixtures are air (a mixture of different gases) and blood (a
mixture of cells, platelets and plasma).

• The main characteristics of mixtures are that the substances that make them up are not
in a fixed ratio, they keep their individual properties and they can be separated from each
other using mechanical means.
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• A heterogeneous mixture is non-uniform and the different parts of the mixture can be
seen. An example would be a mixture of sand and salt.

• A homogeneous mixture is uniform, and the different components of the mixture can’t
be seen. An example would be a salt solution. A salt solution is a mixture of salt and
water. The salt dissolves in the water, meaning that you can’t see the individual salt
particles. They are interspersed between the water molecules. Another example is a metal
alloy such as steel.

• Mixtures can be separated using a number of methods such as filtration, heating, evapo-
ration, centrifugation and dialysis.

• Pure substances can be further divided into elements and compounds.

• An element is a substance that can’t be broken down into simpler substances through
chemical means.

• All the elements are recorded in the Periodic Table of the Elements. Each element has
its own chemical symbol. Examples are iron (Fe), sulfur (S), calcium (Ca), magnesium
(Mg) and fluorine (F).

• A compound is a substance that is made up of two or more elements that are chemically
bonded to each other in a fixed ratio. Examples of compounds are sodium chloride (NaCl),
iron sulfide (FeS), calcium carbonate (CaCO3) and water (H2O).

• When naming compounds and writing their chemical formula, it is important to know
the elements that are in the compound, how many atoms of each of these elements will
combine in the compound and where the elements are in the Periodic Table. A number of
rules can then be followed to name the compound.

• Another way of classifying matter is into metals (e.g. iron, gold, copper), semi-metals
(e.g. silicon and germanium) and non-metals (e.g. sulfur, phosphorus and nitrogen).

• Metals are good electrical and thermal conductors, they have a shiny lustre, they are
malleable and ductile, and they have a high melting point. These properties make metals
very useful in electrical wires, cooking utensils, jewellery and many other applications.

• A further way of classifying matter is into electrical conductors, semi-conductors and
insulators.

• An electrical conductor allows an electrical current to pass through it. Most metals are
good electrical conductors.

• An electrical insulator is not able to carry an electrical current. Examples are plastic,
wood, cotton material and ceramic.

• Materials may also be classified as thermal conductors or thermal insulators depending
on whether or not they are able to conduct heat.

• Materials may also be either magnetic or non-magnetic.

Exercise: Summary

1. For each of the following multiple choice questions, choose one correct answer
from the list provided.

A Which of the following can be classified as a mixture:

i. sugar

ii. table salt

iii. air

iv. iron

B An element can be defined as:
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i. A substance that cannot be separated into two or more substances by
ordinary chemical (or physical) means

ii. A substance with constant composition

iii. A substance that contains two or more substances, in definite propor-
tion by weight

iv. A uniform substance

2. Classify each of the following substances as an element, a compound, a solution
(homogeneous mixture), or a heterogeneous mixture: salt, pure water, soil, salt
water, pure air, carbon dioxide, gold and bronze

3. Look at the table below. In the first column (A) is a list of substances. In the
second column (B) is a description of the group that each of these substances
belongs in. Match up the substance in Column A with the description in
Column B.

Column A Column B
iron a compound containing 2 elements
H2S a heterogeneous mixture
sugar solution a metal alloy
sand and stones an element
steel a homogeneous mixture

4. You are given a test tube that contains a mixture of iron filings and sulfur. You
are asked to weigh the amount of iron in the sample.

a Suggest one method that you could use to separate the iron filings from
the sulfur.

b What property of metals allows you to do this?

5. Given the following descriptions, write the chemical formula for each of the
following substances:

a silver metal

b a compound that contains only potassium and bromine

c a gas that contains the elements carbon and oxygen in a ratio of 1:2

6. Give the names of each of the following compounds:

a NaBr

b BaSO4

c SO2

7. For each of the following materials, say what properties of the material make
it important in carrying out its particular function.

a tar on roads

b iron burglar bars

c plastic furniture

d metal jewellery

e clay for building

f cotton clothing
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Chapter 3

What are the objects around us
made of? - Grade 10

3.1 Introduction: The atom as the building block of matter

We have now seen that different materials have different properties. Some materials are metals
and some are non-metals; some are electrical or thermal conductors, while others are not. De-
pending on the properties of these materials, they can be used in lots of useful applications. But
what is it exactly that makes up these materials? In other words, if we were to break down a
material into the parts that make it up, what would we find? And how is it that a material’s
microscopic structure is able to give it all these different properties?

The answer lies in the smallest building block of matter: the atom. It is the type of atoms, and
the way in which they are arranged in a material, that affects the properties of that substance.

It is not often that substances are found in atomic form. Normally, atoms are bonded to other
atoms to form compounds or molecules. It is only in the noble gases (e.g. helium, neon and
argon) that atoms are found individually and are not bonded to other atoms. We will look at
the reasons for this in a later chapter.

3.2 Molecules

Definition: Molecule
A molecule is a group of two or more atoms that are attracted to each other by relatively
strong forces or bonds

Almost everything around us is made up of molecules. Water is made up of molecules, each of
which has two hydrogen atoms joined to one oxygen atom. Oxygen is a molecule that is made
up of two oxygen atoms that are joined to one another. Even the food that we eat is made
up of molecules that contain atoms of elements such as carbon, hydrogen and oxygen that are
joined to one another in different ways. All of these are known as small molecules because
there are only a few atoms in each molecule. Giant molecules are those where there may be
millions of atoms per molecule. Examples of giant molecules are diamonds, which are made up
of millions of carbon atoms bonded to each other, and metals, which are made up of millions of
metal atoms bonded to each other.

3.2.1 Representing molecules

The structure of a molecule can be shown in many different ways. Sometimes it is easiest to
show what a molecule looks like by using different types of diagrams, but at other times, we
may decide to simply represent a molecule using its chemical formula or its written name.
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1. Using formulae to show the structure of a molecule

A chemical formula is an abbreviated (shortened) way of describing a molecule, or some
other chemical substance. In chapter 2, we saw how chemical compounds can be repre-
sented using element symbols from the Periodic Table. A chemical formula can also tell
us the number of atoms of each element that are in a molecule, and their ratio in that
molecule.

For example, the chemical formula for a molecule of carbon dioxide is:

CO2

The formula above is called the molecular formula of that compound. The formula tells
us that in one molecule of carbon dioxide, there is one atom of carbon and two atoms of
oxygen. The ratio of carbon atoms to oxygen atoms is 1:2.

Definition: Molecular formula
A concise way of expressing information about the atoms that make up a particular chemical
compound. The molecular formula gives the exact number of each type of atom in the
molecule.

A molecule of glucose has the molecular formula:

C6H12O6

In each glucose molecule, there are six carbon atoms, twelve hydrogen atoms and six oxy-
gen atoms. The ratio of carbon:hydrogen:oxygen is 6:12:6. We can simplify this ratio to
write 1:2:1, or if we were to use the element symbols, the formula would be written as
CH2O. This is called the empirical formula of the molecule.

Definition: Empirical formula
This is a way of expressing the relative number of each type of atom in a chemical compound.
In most cases, the empirical formula does not show the exact number of atoms, but rather
the simplest ratio of the atoms in the compound.

The empirical formula is useful when we want to write the formula for a giant molecule.
Since giant molecules may consist of millions of atoms, it is impossible to say exactly how
many atoms are in each molecule. It makes sense then to represent these molecules using
their empirical formula. So, in the case of a metal such as copper, we would simply write
Cu, or if we were to represent a molecule of sodium chloride, we would simply write NaCl.

Chemical formulae therefore tell us something about the types of atoms that are in a
molecule and the ratio in which these atoms occur in the molecule, but they don’t give us
any idea of what the molecule actually looks like, in other words its shape. Another useful
way of representing molecules is to use diagrams.

Another type of formula that can be used to describe a molecule is its structural formula.
A structural formula uses a graphical representation to show a molecule’s structure (figure
3.1).

2. Using diagrams to show the structure of a molecule

Diagrams of molecules are very useful because they give us an idea of the space that is
occupied by the molecule, and they also help us to picture how the atoms are arranged in
the molecule. There are two types of diagrams that are commonly used:
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(a) C4H10 (b) C2H5 CH

CH3

CH3 CH3

Figure 3.1: Diagram showing (a) the molecular, (b) the empirical and (c) the structural formula
of isobutane

• Ball and stick models

This is a 3-dimensional molecular model that uses ’balls’ to represent atoms and
’sticks’ to represent the bonds between them. The centres of the atoms (the balls)
are connected by straight lines which represent the bonds between them. A simplified
example is shown in figure 3.2.

oxygen atom

hydrogen atom

Figure 3.2: A ball and stick model of a water molecule

• Space-filling model

This is also a 3-dimensional molecular model. The atoms are represented by multi-
coloured spheres. Space-filling models of water and ammonia are shown in figures
3.3 and 3.4.

Figures 3.3 and 3.4 are some examples of simple molecules that are represented in dif-
ferent ways.

oxygen atom

hydrogen atoms
O

HH

Figure 3.3: A space-filling model and structural formula of a water molecule. Each molecule
is made up of two hydrogen atoms that are attached to one oxygen atom. This is a simple
molecule.

Figure 3.5 shows the bonds between the carbon atoms in diamond, which is a giant
molecule. Each carbon atom is joined to four others, and this pattern repeats itself until
a complex lattice structure is formed. Each black ball in the diagram represents a carbon
atom, and each line represents the bond between two carbon atoms.

Interesting

Fact

teresting

Fact
Diamonds are most often thought of in terms of their use in the jewellery industry.
However, about 80% of mined diamonds are unsuitable for use as gemstones and
are therefore used in industry because of their strength and hardness. These
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nitrogen atom

hydrogen atom N

H

H

H

Figure 3.4: A space-filling model and structural formula of a molecule of ammonia. Each
molecule is made up of one nitrogen atom and three hydrogen atoms. This is a simple molecule.
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Figure 3.5: Diagrams showing the microscopic structure of diamond. The diagram on the left
shows part of a diamond lattice, made up of numerous carbon atoms. The diagram on the right
shows how each carbon atom in the lattice is joined to four others. This forms the basis of the
lattice structure. Diamond is a giant molecule.

properties of diamonds are due to the strong covalent bonds between the carbon
atoms in diamond. The most common uses for diamonds in industry are in
cutting, drilling, grinding, and polishing.

Exercise: Atoms and molecules

1. In each of the following, say whether the chemical substance is made up of
single atoms, simple molecules or giant molecules.

(a) ammonia gas (NH3)

(b) zinc metal (Zn)

(c) graphite (C)

(d) nitric acid (HNO3)

(e) neon gas (Ne)

2. Refer to the diagram below and then answer the questions that follow:

36



CHAPTER 3. WHAT ARE THE OBJECTS AROUND US MADE OF? - GRADE 10 3.3

C OO

(a) Identify the molecule.

(b) Write the molecular formula for the molecule.

(c) Is the molecule a simple or giant molecule?

3. Represent each of the following molecules using its chemical formula, structural
formula and ball and stick model.

(a) H2

(b) NH3

(c) sulfur dioxide

3.3 Intramolecular and intermolecular forces

When atoms join to form molecules, they are held together by chemical bonds. The type of
bond, and the strength of the bond, depends on the atoms that are involved. These bonds are
called intramolecular forces because they are bonding forces inside a molecule (’intra’ means
’within’ or ’inside’). Sometimes we simply call these intramolecular forces chemical bonds.

Definition: Intramolecular force
The force between the atoms of a molecule, which holds them together.

Examples of the types of chemical bonds that can exist between atoms inside a molecule are
shown below. These will be looked at in more detail in Grade 11.

• Covalent bond

Covalent bonds exist between non-metal atoms e.g. There are covalent bonds between
the carbon and oxygen atoms in a molecule of carbon dioxide.

• Ionic bond

Ionic bonds occur between non-metal and metal atoms e.g. There are ionic bonds between
the sodium and chlorine atoms in a molecule of sodium chloride.

• Metallic bond

Metallic bonds join metal atoms e.g. There are metallic bonds between copper atoms in
a piece of copper metal.

Intermolecular forces are those bonds that hold molecules together. A glass of water for
example, contains many molecules of water. These molecules are held together by intermolecular
forces. The strength of the intermolecular forces is important because they affect properties such
asmelting point and boiling point. For example, the stronger the intermolecular forces, the higher
the melting point and boiling point for that substance. The strength of the intermolecular forces
increases as the size of the molecule increases.
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Definition: Intermolecular force
A force between molecules, which holds them together.

Diagram 3.6 may help you to understand the difference between intramolecular forces and inter-
molecular forces.

0

HH

0

HH

0

HH

intermolecular forces
intramolecular forces

Figure 3.6: Two representations showing the intermolecular and intramolecular forces in water:
space-filling model and structural formula.

It should be clearer now that there are two types of forces that hold matter together. In the case
of water, there are intramolecular forces that hold the two hydrogen atoms to the oxygen atom
in each molecule of water. There are also intermolecular forces between each of these water
molecules. As mentioned earlier, these forces are very important because they affect many of
the properties of matter such as boiling point, melting point and a number of other properties.
Before we go on to look at some of these examples, it is important that we first take a look at
the Kinetic Theory of Matter.

Exercise: Intramolecular and intermolecular forces

1. Using ammonia gas as an example...

(a) Explain what is meant by an intramolecular force or chemical bond.

(b) Explain what is meant by an intermolecular force.

2. Draw a diagram showing three molecules of carbon dioxide. On the diagram,
show where the intramolecular and intermolecular forces are.

3. Why is it important to understand the types of forces that exist between atoms
and between molecules? Try to use some practical examples in your answer.

3.4 The Kinetic Theory of Matter

The kinetic theory of matter is used to explain why matter exists in different phases (i.e. solid,
liquid and gas), and how matter can change from one phase to the next. The kinetic theory of
matter also helps us to understand other properties of matter. It is important to realise that
what we will go on to describe is only a theory. It cannot be proved beyond doubt, but the fact
that it helps us to explain our observations of changes in phase, and other properties of matter,
suggests that it probably is more than just a theory.

Broadly, the Kinetic Theory of Matter says that:
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• Matter is made up of particles that are constantly moving.

• All particles have energy, but the energy varies depending on whether the substance is a
solid, liquid or gas. Solid particles have the least energy and gas particles have the most
amount of energy.

• The temperature of a substance is a measure of the average kinetic energy of the particles.

• A change in phase may occur when the energy of the particles is changed.

• There are spaces between the particles of matter.

• There are attractive forces between particles and these become stronger as the particles
move closer together. These attractive forces will either be intramolecular forces (if the
particles are atoms) or intermolecular forces (if the particles are molecules). When the
particles are extremely close, repulsive forces start to act.

Table 3.1 summarises the characteristics of the particles that are in each phase of matter.

Table 3.1: Table summarising the general features of solids, liquids and gases.
Property of matter Gas Liquid Solid
Particles Atoms or molecules Atoms or molecules Atoms or molecules
Energy and move-
ment of particles

Particles have high
energy and are con-
stantly moving

Particles have less
energy than in the
gas phase

Low energy - parti-
cles vibrate around a
fixed point

Spaces between par-
ticles

Large spaces be-
cause of high energy

Smaller spaces than
in gases

Very little space
between particles.
Particles are tightly
packed together

Attractive forces be-
tween particles

Weak forces because
of the large distance
between particles

Stronger forces than
in gas. Liquids can
be poured.

Very strong forces.
Solids have a fixed
volume.

Changes in phase In general a gas
becomes a liquid
or solid when it is
cooled. Particles
have less energy
and therefore move
closer together so
that the attrac-
tive forces become
stronger, and the
gas becomes a liquid
or a solid

A liquid becomes a
gas if its tempera-
ture is increased. It
becomes a solid if
its temperature de-
creases.

Solids become liq-
uids or gases if their
temperature is in-
creased.

Let’s look at an example that involves the three phases of water: ice (solid), water (liquid) and
water vapour (gas).

solid liquid gas

Figure 3.7: The three phases of matter

In a solid (e.g. ice), the water molecules have very little energy and can’t move away from each
other. The molecules are held closely together in a regular pattern called a lattice. If the ice is
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heated, the energy of the molecules increases. This means that some of the water molecules are
able to overcome the intermolecular forces that are holding them together, and the molecules
move further apart to form liquid water. This is why liquid water is able to flow, because the
molecules are more free to move than they were in the solid lattice. If the molecules are heated
further, the liquid water will become water vapour, which is a gas. Gas particles have lots of
energy and are far away from each other. That is why it is difficult to keep a gas in a specific
area! The attractive forces between the particles are very weak and they are only loosely held
together. Figure 3.8 shows the changes in phase that may occur in matter, and the names that
describe these processes.
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melting
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Gas

Figure 3.8: Changes in phase

3.5 The Properties of Matter

Let us now look at what we have learned about chemical bonds, intermolecular forces and the
kinetic theory of matter, and see whether this can help us to understand some of the macroscopic
properties of materials.

1. Melting point

Definition: Melting point
The temperature at which a solid changes its phase or state to become a liquid. The reverse
process (change in phase from liquid to solid) is called freezing.

In order for a solid to melt, the energy of the particles must increase enough to overcome
the bonds that are holding the particles together. It makes sense then that a solid which is
held together by strong bonds will have a higher melting point than one where the bonds
are weak, because more energy (heat) is needed to break the bonds. In the examples we
have looked at, metals, ionic solids and some atomic lattices (e.g. diamond) have high
melting points, whereas the melting points for molecular solids and other atomic lattices
(e.g. graphite) are much lower. Generally, the intermolecular forces between molecular
solids are weaker than those between ionic and metallic solids.

2. Boiling point

Definition: Boiling point
The temperature at which a liquid changes its phase to become a gas.
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When the temperature of a liquid increases, the average kinetic energy of the particles also
increases, and they are able to overcome the bonding forces that are holding them in the
liquid. When boiling point is reached, evaporation takes place and some particles in the
liquid become a gas. In other words, the energy of the particles is too great for them to
be held in a liquid anymore. The stronger the bonds within a liquid, the higher the boiling
point needs to be in order to break these bonds. Metallic and ionic compounds have high
boiling points while the boiling point for molecular liquids is lower.

The data in table 3.2 below may help you to understand some of the concepts we have
explained. Not all of the substances in the table are solids at room temperature, so for
now, let’s just focus on the boiling points for each of these substances. Of the substances
listed, ethanol has the weakest intermolecular forces, and sodium chloride and mercury
have the strongest. What do you notice?

Substance Melting point (0C) Boiling point (0C)
Ethanol (C2H6O) -114,3 78,4
Water 0 100
Mercury -38,83 356,73
Sodium chloride 801 1465

Table 3.2: The melting and boiling points for a number of substances

You will have seen that substances such as ethanol, with relatively weak intermolecular
forces, have the lowest boiling point, while substances with stronger intermolecular forces
such as sodium chloride and mercury, must be heated much more if the particles are to
have enough energy to overcome the forces that are holding them together in the liquid.

Exercise: Forces and boiling point
The table below gives the molecular formula and the boiling point for a

number of organic compounds called alkanes. Refer to the table and then
answer the questions that follow.

Organic compound Molecular formula Boiling point (0C)
Methane CH2 -161.6
Ethane C2H6 -88.6
Propane C3H8 -45
Butane C4H10 -0.5
Pentane C5H12 36.1
Hexane C6H14 69
Heptane C7H16 98.42
Octane C8H18 125.52

Data from: http://www.wikipedia.com

(a) Draw a graph to show the relationship between the number of carbon atoms
in each alkane, and its boiling point (Number of carbon atoms will go on
the x-axis and boiling point on the y-axis).

(b) Describe what you see.

(c) Suggest a reason for what you have observed.

(d) Why was it enough for us to use ’number of carbon atoms’ as a measure
of the molecular weight of the molecules?

3. Density and viscosity

Density is a measure of the mass of a substance per unit volume. The density of a solid
is generally higher than that of a liquid because the particles are held much more closely
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together and therefore there are more particles packed together in a particular volume. In
other words, there is a greater mass of the substance in a particular volume. In general,
density increases as the strength of the intermolecular forces increases. Viscosity is a
measure of how resistant a liquid is to flowing (in other words, how easy it is to pour
the liquid from one container to another). Viscosity is also sometimes described as the
’thickness’ of a fluid. Think for example of syrup and how slowly it pours from one
container into another. Now compare this to how easy it is to pour water. The viscosity
of syrup is greater than the viscosity of water. Once again, the stronger the intermolecular
forces in the liquid, the greater its viscosity.

It should be clear now that we can explain a lot of the macroscopic properties of matter (i.e.
the characteristics we can see or observe) by understanding their microscopic structure and
the way in which the atoms and molecules that make up matter are held together.

Activity :: Investigation : Determining the density of liquids:
Density is a very important property because it helps us to identify different

materials. Every material, depending on the elements that make it up, and the
arrangement of its atoms, will have a different density.

The equation for density is:

Density = Mass/Volume

Discussion questions:
To calculate the density of liquids and solids, we need to be able to first determine

their mass and volume. As a group, think about the following questions:

• How would you determine the mass of a liquid?

• How would you determine the volume of an irregular solid?

Apparatus:
Laboratory mass balance, 10 ml and 100 ml graduated cylinders, thread, distilled

water, two different liquids.
Method:
Determine the density of the distilled water and two liquids as follows:

1. Measure and record the mass of a 10 ml graduated cyclinder.

2. Pour an amount of distilled water into the cylinder.

3. Measure and record the combined mass of the water and cylinder.

4. Record the volume of distilled water in the cylinder

5. Empty, clean and dry the graduated cylinder.

6. Repeat the above steps for the other two liquids you have.

7. Complete the table below.

Liquid Mass (g) Volume (ml) Density (g.ml−1)
Distilled water
Liquid 1
Liquid 2

Activity :: Investigation : Determining the density of irregular solids:
Apparatus:
Use the same materials and equpiment as before (for the liquids). Also find a

number of solids that have an irregular shape.
Method:
Determine the density of irregular solids as follows:
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1. Measure and record the mass of one of the irregular solids.

2. Tie a piece of thread around the solid.

3. Pour some water into a 100 ml graduated cylinder and record the volume.

4. Gently lower the solid into the water, keeping hold of the thread. Record the
combined volume of the solid and the water.

5. Determine the volume of the solid by subtracting the combined volume from
the original volume of the water only.

6. Repeat these steps for the second object.

7. Complete the table below.

Solid Mass (g) Volume (ml) Density (g.ml−1)
Solid 1
Solid 2
Solid 3

3.6 Summary

• The smallest unit of matter is the atom. Atoms can combine to form molecules.

• A molecule is a group of two or more atoms that are attracted to each other by chemical
bonds.

• A small molecule consists of a few atoms per molecule. A giant molecule consists of
millions of atoms per molecule, for example metals and diamonds.

• The structure of a molecule can be represented in a number of ways.

• The chemical formula of a molecule is an abbreviated way of showing a molecule, using
the symbols for the elements in the molecule. There are two types of chemical formulae:
molecular and empirical formula.

• The molecular formula of a molecule gives the exact number of atoms of each element
that are in the molecule.

• The empirical formula of a molecule gives the relative number of atoms of each element
in the molecule.

• Molecules can also be represented using diagrams.

• A ball and stick diagram is a 3-dimensional molecular model that uses ’balls’ to represent
atoms and ’sticks’ to represent the bonds between them.

• A space-filling model is also a 3-dimensional molecular model. The atoms are represented
by multi-coloured spheres.

• In a molecule, atoms are held together by chemical bonds or intramolecular forces.
Covalent bonds, ionic bonds and metallic bonds are examples of chemical bonds.

• A covalent bond exists between non-metal atoms. An ionic bond exists between non-
metal and metal atoms, and a metallic bond exists between metal atoms.

• Intermolecular forces are the bonds that hold molecules together.

• The kinetic theory of matter attempts to explain the behaviour of matter in different
phases.

• The theory says that all matter is composed of particles which have a certain amount
of energy which allows them to move at different speeds depending on the temperature
(energy). There are spaces between the particles, and also attractive forces between
particles when they come close together.
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• Understanding chemical bonds, intermolecular forces and the kinetic theory of matter, can
help to explain many of the macroscopic properties of matter.

• Melting point is the temperature at which a solid changes its phase to become a liquid.
The reverse process (change in phase from liquid to solid) is called freezing. The stronger
the chemical bonds and intermolecular forces in a substance, the higher the melting point
will be.

• Boiling point is the temperature at which a liquid changes phase to become a gas. The
stronger the chemical bonds and intermolecular forces in a substance, the higher the boiling
point will be.

• Density is a measure of the mass of a substance per unit volume.

• Viscosity is a measure of how resistant a liquid is to flowing.

Exercise: Summary exercise

1. Give one word or term for each of the following descriptions.

(a) The property that determines how easily a liquid flows.

(b) The change in phase from liquid to gas.

(c) A composition of two or more atoms that act as a unit.

(d) Chemical formula that gives the relative number of atoms of each element
that are in a molecule.

2. For each of the following questions, choose the one correct answer from the
list provided.

A Ammonia, an ingredient in household cleaners, can be broken down to
form one part nitrogen (N) and three parts hydrogen (H). This means that
ammonia...

i. is a colourless gas

ii. is not a compound

iii. cannot be an element

iv. has the formula N3H

B If one substance A has a melting point that is lower than the melting point
of substance B, this suggests that...

i. A will be a liquid at room temperature.

ii. The chemical bonds in substance A are weaker than those in substance
B.

iii. The chemical bonds in substance A are stronger than those in sub-
stance B.

iv. B will be a gas at room temperature.

3. Boiling point is an important concept to understand.

a Define ’boiling point’.

b What change in phase takes place when a liquid reaches its boiling point?

c What is the boiling point of water?

d Use the kinetic theory of matter and your knowledge of intermolecular
forces, to explain why water changes phase at this temperature.

4. Refer to the table below which gives the melting and boiling points of a
number of elements, and then answer the questions that follow. (Data from
http://www.chemicalelements.com)

Element Melting point Boiling point (0C)
copper 1083 2567
magnesium 650 1107
oxygen -218.4 -183
carbon 3500 4827
helium -272 -268.6
sulfur 112.8 444.6
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a What state of matter (i.e. solid, liquid or gas) will each of these elements
be in at room temperature?

b Which of these elements has the strongest forces between its atoms? Give
a reason for your answer.

c Which of these elements has the weakest forces between its atoms? Give
a reason for your answer.
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Chapter 4

The Atom - Grade 10

We have now looked at many examples of the types of matter and materials that exist around
us, and we have investigated some of the ways that materials are classified. But what is it that
makes up these materials? And what makes one material different from another? In order to
understand this, we need to take a closer look at the building block of matter, the atom. Atoms
are the basis of all the structures and organisms in the universe. The planets, the sun, grass and
trees, the air we breathe, and people are all made up of different combinations of atoms.

4.1 Models of the Atom

It is important to realise that a lot of what we know about the structure of atoms has been
developed over a long period of time. This is often how scientific knowledge develops, with
one person building on the ideas of someone else. We are going to look at how our modern
understanding of the atom has evolved over time.

The idea of atoms was invented by two Greek philosophers, Democritus and Leucippus in the
fifth century BC. The Greek word ατoµoν (atom) means indivisible because they believed that
atoms could not be broken into smaller pieces.

Nowadays, we know that atoms are made up of a positively charged nucleus in the centre
surrounded by negatively charged electrons. However, in the past, before the structure of the
atom was properly understood, scientists came up with lots of different models or pictures to
describe what atoms look like.

Definition: Model
A model is a representation of a system in the real world. Models help us to understand
systems and their properties. For example, an atomic model represents what the structure
of an atom could look like, based on what we know about how atoms behave. It is not
necessarily a true picture of the exact structure of an atom.

4.1.1 The Plum Pudding Model

After the electron was discovered by J.J. Thomson in 1897, people realised that atoms were made
up of even smaller particles than they had previously thought. However, the atomic nucleus had
not been discovered yet, and so the ’plum pudding model’ was put forward in 1904. In this
model, the atom is made up of negative electrons that float in a soup of positive charge, much
like plums in a pudding or raisins in a fruit cake (figure 4.1). In 1906, Thomson was awarded
the Nobel Prize for his work in this field. However, even with the Plum Pudding Model, there
was still no understanding of how these electrons in the atom were arranged.
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Figure 4.1: A schematic diagram to show what the atom looks like according to the Plum
Pudding model

The discovery of radiation was the next step along the path to building an accurate picture of
atomic structure. In the early twentieth century, Marie Curie and her husband discovered that
some elements (the radioactive elements) emit particles, which are able to pass through matter
in a similar way to X-rays (read more about this in Grade 11). It was Ernest Rutherford who, in
1911, used this discovery to revise the model of the atom.

4.1.2 Rutherford’s model of the atom

Radioactive elements emit different types of particles. Some of these are positively charged alpha
(α) particles. Rutherford carried out a series of experiments where he bombarded sheets of gold
foil with these particles, to try to get a better understanding of where the positive charge in the
atom was. A simplified diagram of his experiment is shown in figure 4.2.
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Figure 4.2: Rutherford’s gold foil experiment. Figure (a) shows the path of the α particles after
they hit the gold sheet. Figure (b) shows the arrangement of atoms in the gold sheets, and the
path of the α particles in relation to this.

Rutherford set up his experiment so that a beam of alpha particles was directed at the gold
sheets. Behind the gold sheets, was a screen made of zinc sulfide. This screen allowed Ruther-
ford to see where the alpha particles were landing. Rutherford knew that the electrons in the gold
atoms would not really affect the path of the alpha particles, because the mass of an electron is
so much smaller than that of a proton. He reasoned that the positively charged protons would
be the ones to repel the positively charged alpha particles and alter their path.
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What he discovered was that most of the alpha particles passed through the foil undisturbed,
and could be detected on the screen directly behind the foil (A). Some of the particles ended up
being slightly deflected onto other parts of the screen (B). But what was even more interesting
was that some of the particles were deflected straight back in the direction from where they
had come (C)! These were the particles that had been repelled by the positive protons in the
gold atoms. If the Plum Pudding model of the atom were true, then Rutherford would have
expected much more repulsion since the positive charge, according to that model, is distributed
throughout the atom. But this was not the case. The fact that most particles passed straight
through suggested that the positive charge was concentrated in one part of the atom only.

Rutherford’s work led to a change in ideas around the atom. His new model described the
atom as a tiny, dense, positively charged core called a nucleus, surrounded by lighter, negatively
charged electrons. Another way of thinking about this model was that the atom was seen to be
like a mini solar system where the electrons orbit the nucleus like planets orbiting around the
sun. A simplified picture of this is shown in figure 4.3.

b

b

electron orbiting the nucleus

b b

b

b

nucleus (containing protons and neutrons)

Figure 4.3: Rutherford’s model of the atom

4.1.3 The Bohr Model

There were, however, some problems with this model: for example it could not explain the very
interesting observation that atoms only emit light at certain wavelengths or frequencies. Niels
Bohr solved this problem by proposing that the electrons could only orbit the nucleus in certain
special orbits at different energy levels around the nucleus. The exact energies of the orbitals in
each energy level depends on the type of atom. Helium for example, has different energy levels
to Carbon. If an electron jumps down from a higher energy level to a lower energy level, then
light is emitted from the atom. The energy of the light emitted is the same as the gap in the
energy between the two energy levels. You can read more about this in section 4.6. The distance
between the nucleus and the electron in the lowest energy level of a hydrogen atom is known as
the Bohr radius.

Interesting

Fact

teresting

Fact
Light has the properties of both a particle and a wave! Einstein discovered that
light comes in energy packets which are called photons. When an electron in
an atom changes energy levels, a photon of light is emitted. This photon has the
same energy as the difference between the two electron energy levels.
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4.2 How big is an atom?

It is difficult sometimes to imagine the size of an atom, or its mass, because we cannot see them,
and also because we are not used to working with such small measurements.

4.2.1 How heavy is an atom?

It is possible to determine the mass of a single atom in kilograms. But to do this, you would
need very modern mass spectrometers, and the values you would get would be very clumsy and
difficult to use. The mass of a carbon atom, for example, is about 1.99 x 10−26kg, while the
mass of an atom of hydrogen is about 1.67 x 10−27kg. Looking at these very small numbers
makes it difficult to compare how much bigger the mass of one atom is when compared to another.

To make the situation simpler, scientists use a different unit of mass when they are describing
the mass of an atom. This unit is called the atomic mass unit (amu). We can abbreviate
(shorten) this unit to just ’u’. If we give carbon an atomic mass of 12 u, then the mass of an
atom of hydrogen will be 1 u. You can check this by dividing the mass of a carbon atom in
kilograms (see above) by the mass of a hydrogen atom in kilograms (you will need to use a
calculator for this!). If you do this calculation, you will see that the mass of a carbon atom is
twelve times greater than the mass of a hydrogen atom. When we use atomic mass units instead
of kilograms, it becomes easier to see this. Atomic mass units are therefore not giving us the
actual mass of an atom, but rather its mass relative to the mass of other atoms in the Periodic
Table. The atomic masses of some elements are shown in table 4.1 below.

Table 4.1: The atomic mass of a number of elements
Element Atomic mass (u)

Nitrogen (N) 14
Bromine (Br) 80

Magnesium (Mg) 24
Potassium (K) 39
Calcium (Ca) 40
Oxygen (O) 16

The actual value of 1 atomic mass unit is 1.67 x 10−24g or 1.67 x 10−27kg. This is a very tiny
mass!

4.2.2 How big is an atom?

pm stands for
picometres. 1
pm = 10−12

m

Atomic diameter also varies depending on the element. On average, the diameter of an atom
ranges from 100 pm (Helium) to 670 pm (Caesium). Using different units, 100 pm = 1 Angstrom,
and 1 Angstrom = 10−10 m. That is the same as saying that 1 Angstrom = 0,0000000010 m
or that 100 pm = 0,0000000010 m! In other words, the diameter of an atom ranges from
0.0000000010 m to 0.0000000067 m. This is very small indeed.

4.3 Atomic structure

As a result of the models that we discussed in section 4.1, scientists now have a good idea of
what an atom looks like. This knowledge is important because it helps us to understand why
materials have different properties and why some materials bond with others. Let us now take
a closer look at the microscopic structure of the atom.

So far, we have discussed that atoms are made up of a positively charged nucleus surrounded
by one or more negatively charged electrons. These electrons orbit the nucleus.

50



CHAPTER 4. THE ATOM - GRADE 10 4.3

4.3.1 The Electron

The electron is a very light particle. It has a mass of 9.11 x 10−31 kg. Scientists believe that the
electron can be treated as a point particle or elementary particle meaning that it can’t be broken
down into anything smaller. The electron also carries one unit of negative electric charge which
is the same as 1.6 x 10−19 C (Coulombs).

4.3.2 The Nucleus

Unlike the electron, the nucleus can be broken up into smaller building blocks called protons
and neutrons. Together, the protons and neutrons are called nucleons.

The Proton

Each proton carries one unit of positive electric charge. Since we know that atoms are electrically
neutral, i.e. do not carry any extra charge, then the number of protons in an atom has to be the
same as the number of electrons to balance out the positive and negative charge to zero. The
total positive charge of a nucleus is equal to the number of protons in the nucleus. The proton
is much heavier than the electron (10 000 times heavier!) and has a mass of 1.6726 x 10−27 kg.
When we talk about the atomic mass of an atom, we are mostly referring to the combined mass
of the protons and neutrons, i.e. the nucleons.

The Neutron

The neutron is electrically neutral i.e. it carries no charge at all. Like the proton, it is much
heavier than the electron and its mass is 1.6749 x 10−27 kg (slightly heavier than the proton).

Interesting

Fact

teresting

Fact
Rutherford predicted (in 1920) that another kind of particle must be present in
the nucleus along with the proton. He predicted this because if there were only
positively charged protons in the nucleus, then it should break into bits because
of the repulsive forces between the like-charged protons! Also, if protons were
the only particles in the nucleus, then a helium nucleus (atomic number 2) would
have two protons and therefore only twice the mass of hydrogen. However, it is
actually four times heavier than hydrogen. This suggested that there must be
something else inside the nucleus as well as the protons. To make sure that the
atom stays electrically neutral, this particle would have to be neutral itself. In
1932 James Chadwick discovered the neutron and measured its mass.

proton neutron electron
Mass (kg) 1.6726 x 10−27 1.6749 x 10−27 9.11 x 10−31

Units of charge +1 0 -1
Charge (C) 1.6 x 10−19 0 -1.6 x 10−19

Table 4.2: Summary of the particles inside the atom

Interesting

Fact

teresting

Fact
Unlike the electron which is thought to be a point particle and unable to be
broken up into smaller pieces, the proton and neutron can be divided. Protons
and neutrons are built up of smaller particles called quarks. The proton and
neutron are made up of 3 quarks each.

51



4.4 CHAPTER 4. THE ATOM - GRADE 10

4.4 Atomic number and atomic mass number

The chemical properties of an element are determined by the charge of its nucleus, i.e. by the
number of protons. This number is called the atomic number and is denoted by the letter Z.

Definition: Atomic number (Z)
The number of protons in an atom

The mass of an atom depends on how many nucleons its nucleus contains. The number of
nucleons, i.e. the total number of protons plus neutrons, is called the atomic mass number
and is denoted by the letter A.

Definition: Atomic mass number (A)
The number of protons and neutrons in the nucleus of an atom

Standard notation shows the chemical symbol, the atomic mass number and the atomic number
of an element as follows:

A

ZX

number of nucleons

number of protons

chemical symbol

For example, the iron nucleus which has 26 protons and 30 neutrons, is denoted as:

56
26Fe

where the total nuclear charge is Z = 26 and the mass number A = 56. The number of neutrons
is simply the difference N = A− Z.
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Important:
Don’t confuse the notation we have used above, with the way this information appears
on the Periodic Table. On the Periodic Table, the atomic number usually appears in the
top lefthand corner of the block or immediately above the element’s symbol. The number
below the element’s symbol is its relative atomic mass. This is not exactly the same as
the atomic mass number. This will be explained in section 4.5. The example of iron is
shown again below.

Fe

26

55.85

You will notice in the example of iron that the atomic mass number is more or less the same as
its atomic mass. Generally, an atom that contains n nucleons (protons and neutrons), will have
a mass approximately equal to nu. For example the mass of a C-12 atom which has 6 protons,
6 neutrons and 6 electrons is 12u, where the protons and neutrons have about the same mass
and the electron mass is negligible.

Exercise: The structure of the atom

1. Explain the meaning of each of the following terms:

(a) nucleus

(b) electron

(c) atomic mass

2. Complete the following table: (Note: You will see that the atomic masses on
the Periodic Table are not whole numbers. This will be explained later. For
now, you can round off to the nearest whole number.)

Element Atomic
mass

Atomic
number

Number
of pro-
tons

Number
of elec-
trons

Number
of neu-
trons

Mg 24 12
O 8

17
Ni 28

40 20
Zn

0
C 12 6

3. Use standard notation to represent the following elements:

(a) potassium

(b) copper

(c) chlorine

4. For the element 35
17Cl, give the number of ...

(a) protons

(b) neutrons

(c) electrons

... in the atom.
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5. Which of the following atoms has 7 electrons?

(a) 5
2He

(b) 13
6 C

(c) 7
3Li

(d) 15
7 N

6. In each of the following cases, give the number or the element symbol repre-
sented by ’X’.

(a) 40
18X

(b) x
20Ca

(c) 31
x P

7. Complete the following table:

A Z N
235
92 U
238
92 U

In these two different forms of Uranium...

(a) What is the same?

(b) What is different?

Uranium can occur in different forms, called isotopes. You will learn more
about isotopes in section 4.5.

4.5 Isotopes

4.5.1 What is an isotope?

If a few neutrons are added to or removed from a nucleus, the chemical properties of the atom
will stay the same because its charge is still the same. Therefore, the chemical properties of an
element depend on the number of protons inside the atom. This means that such an atom should
remain in the same place in the Periodic table. For example, no matter how many neutrons we
add or subtract from a nucleus with 6 protons, that element will always be called carbon and
have the element symbol C (see the Table of Elements). Atoms which have the same number
of protons, but a different number of neutrons, are called isotopes.

Definition: Isotope
The isotope of a particular element, is made up of atoms which have the same number of
protons as the atoms in the orginal element, but a different number of neutrons.

The different isotopes of an element have the same atomic number Z but different mass numbers
A because they have a different number of neutrons N . The chemical properties of the different
isotopes of an element are the same, but they might vary in how stable their nucleus is. Note
that if an element is written for example as C-12, the ’12’ is the atomic mass of that atom. So,
Cl-35 has an atomic mass of 35 u, while Cl-37 has an atomic mass of 37 u.

Interesting

Fact

teresting

Fact
In Greek, “same place” reads as ὶσoς τ òπoς (isos topos). This is why atoms
which have the same number of protons, but different numbers of neutrons, are
called isotopes. They are in the same place on the Periodic Table!
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The following worked examples will help you to understand the concept of an isotope better.

Worked Example 5: Isotopes
Question: For the element 234

92 U (uranium), use standard notation to
describe:

1. the isotope with 2 fewer neutrons

2. the isotope with 4 more neutrons

Answer
Step 1 : Go over the definition of isotope
We know that isotopes of any element have the same number of protons
(same atomic number) in each atom which means that they have the same
chemical symbol. However, they have a different number of neutrons, and
therefore a different mass number.

Step 2 : Rewrite the notation for the isotopes
Therefore, any isotope of uranium will have the symbol:

U

Also, since the number of protons in uranium isotopes is always the same,
we can write down the atomic number:

92U

Now, if the isotope we want has 2 fewer neutrons than 234
92 U, then we take

the original mass number and subtract 2, which gives:

232
92 U

Following the steps above, we can write the isotope with 4 more neutrons
as:

238
92 U

Worked Example 6: Isotopes
Question: Which of the following are isotopes of 40

20Ca?

• 40
19K

• 42
20Ca

• 40
18Ar

Answer
Step 1 : Go over the definition of isotope:
We know that isotopes have the same atomic number but different mass
numbers.

Step 2 : Determine which of the elements listed fits the definition of
an isotope.
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You need to look for the element that has the same atomic number but a
different atomic mass number. The only element is 42

20Ca. What is different
is that there are 2 more neutrons than in the original element.

Worked Example 7: Isotopes
Question: For the sulfur isotope 33

16S, give the number of...

1. protons

2. nucleons

3. electrons

4. neutrons

Answer
Step 1 : Determine the number of protons by looking at the atomic
number, Z.
Z = 16, therefore the number of protons is 16 (answer to (a)).

Step 2 : Determine the number of nucleons by looking at the atomic
mass number, A.
A = 33, therefore the number of nucleons is 33 (answer to (b)).

Step 3 : Determine the number of electrons
The atom is neutral, and therefore the number of electrons is the same as
the number of protons. The number of electrons is 16 (answer to (c)).

Step 4 : Calculate the number of neutrons

N = A− Z = 33− 16 = 17

The number of neutrons is 17 (answer to (d)).

Exercise: Isotopes

1. Atom A has 5 protons and 5 neutrons, and atom B has 6 protons and 5 neutrons.
These atoms are...

(a) allotropes

(b) isotopes

(c) isomers

(d) atoms of different elements

2. For the sulfur isotopes, 32
16S and 34

16S, give the number of...

(a) protons

(b) nucleons

(c) electrons

(d) neutrons
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3. Which of the following are isotopes of 35Cl?

(a) 17
35Cl

(b) 35
17Cl

(c) 37
17Cl

4. Which of the following are isotopes of U-235? (X represents an element symbol)

(a) 238
92 X

(b) 238
90 X

(c) 235
92 X

4.5.2 Relative atomic mass

It is important to realise that the atomic mass of isotopes of the same element will be different
because they have a different number of nucleons. Chlorine, for example, has two common
isotopes which are chlorine-35 and chlorine-37. Chlorine-35 has an atomic mass of 35 u, while
chlorine-37 has an atomic mass of 37 u. In the world around us, both of these isotopes occur
naturally. It doesn’t make sense to say that the element chlorine has an atomic mass of 35
u, or that it has an atomic mass of 37 u. Neither of these are absolutely true since the mass
varies depending on the form in which the element occurs. We need to look at how much more
common one is than the other in order to calculate the relative atomic mass for the element
chlorine. This is then the number that will appear on the Periodic Table.

Definition: Relative atomic mass
Relative atomic mass is the average mass of one atom of all the naturally occurring isotopes
of a particular chemical element, expressed in atomic mass units.

Worked Example 8: The relative atomic mass of an isotopic element

Question: The element chlorine has two isotopes, chlorine-35 and
chlorine-37. The abundance of these isotopes when they occur naturally
is 75% chlorine-35 and 25% chlorine-37. Calculate the average relative
atomic mass for chlorine.

Answer
Step 1 : Calculate the mass contribution of chlorine-35 to the
average relative atomic mass

Contribution of Cl-35 = (75/100 x 35) = 26,25 u

Step 2 : Calculate the contribution of chlorine-37 to the average
relative atomic mass

Contribution of Cl-37 = (25/100 x 37) = 9,25 u

Step 3 : Add the two values to arrive at the average relative atomic
mass of chlorine

Relative atomic mass of chlorine = 26,25 u + 9,25 u = 35,5 u
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If you look on the periodic table, the average relative atomic mass for chlorine
is 35,5 u. You will notice that for many elements, the relative atomic mass
that is shown is not a whole number. You should now understand that this
number is the average relative atomic mass for those elements that have
naturally occurring isotopes.

Exercise: Isotopes
You are given a sample that contains carbon-12 and carbon-14.

1. Complete the table below:

Isotope Z A Protons Neutrons Electrons
Carbon-12
Carbon-14
Chlorine-35
Chlorine-37

(a) If the sample you have contains 90% carbon-12 and 10% carbon-14, cal-
culate the relative atomic mass of an atom in that sample.

(b) In another sample, you have 22.5% Cl-37 and 77.5% Cl-35. Calculate the
relative atomic mass of an atom in that sample.

Activity :: Group Discussion : The changing nature of scientific knowledge
Scientific knowledge is not static: it changes and evolves over time as scientists

build on the ideas of others to come up with revised (and often improved) theories and
ideas. In this chapter for example, we saw how peoples’ understanding of atomic
structure changed as more information was gathered about the atom. There are
many more examples like this one in the field of science. For example, think about
our knowledge of the solar system and the origin of the universe, or about the particle
and wave nature of light.

Often, these changes in scientific thinking can be very controversial because they
disturb what people have come to know and accept. It is important that we realise
that what we know now about science may also change. An important part of
being a scientist is to be a critical thinker. This means that you need to question
information that you are given and decide whether it is accurate and whether it can
be accepted as true. At the same time, you need to learn to be open to new ideas
and not to become stuck in what you believe is right... there might just be something
new waiting around the corner that you have not thought about!

In groups of 4-5, discuss the following questions:

• Think about some other examples where scientific knowledge has changed be-
cause of new ideas and discoveries:

– What were these new ideas?

– Were they controversial? If so, why?

– What role (if any) did technology play in developing these new ideas?

– How have these ideas affected the way we understand the world?
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• Many people come up with their own ideas about how the world works. The
same is true in science. So how do we, and other scientists, know what to
believe and what not to? How do we know when new ideas are ’good’ science
or ’bad’ science? In your groups, discuss some of the things that would need
to be done to check whether a new idea or theory was worth listening to, or
whether it was not.

• Present your ideas to the rest of the class.

4.6 Energy quantisation and electron configuration

4.6.1 The energy of electrons

You will remember from our earlier discussions, that an atom is made up of a central nucleus,
which contains protons and neutrons, and that this nucleus is surrounded by electrons. Although
these electrons all have the same charge and the same mass, each electron in an atom has a
different amount of energy. Electrons that have the lowest energy are found closest to the nucleus
where the attractive force of the positively charged nucleus is the greatest. Those electrons that
have higher energy, and which are able to overcome the attractive force of the nucleus, are found
further away.

4.6.2 Energy quantisation and line emission spectra

If the energy of an atom is increased (for example when a substance is heated), the energy of the
electrons inside the atom can be increased (when an electron has a higher energy than normal
it is said to be ”excited”). For the excited electron to go back to its original energy (called the
ground state), it needs to release energy. It releases energy by emitting light. If one heats up
different elements, one will see that for each element, light is emitted only at certain frequencies
(or wavelengths). Instead of a smooth continuum of frequencies, we see lines (called emission
lines) at particular frequencies. These frequencies correspond to the energy of the emitted light.
If electrons could be excited to any energy and lose any amount of energy, there would be a
continuous spread of light frequencies emitted. However, the sharp lines we see mean that there
are only certain particular energies that an electron can be excited to, or can lose, for each
element.

You can think of this like going up a flight of steps: you can’t lift your foot by any amount to
go from the ground to the first step. If you lift your foot too low you’ll bump into the step and
be stuck on the ground level. You have to lift your foot just the right amount (the height of the
step) to go to the next step, and so on. The same goes for electrons and the amount of energy
they can have. This is called quantisation of energy because there are only certain quantities
of energy that an electron can have in an atom. Like steps, we can think of these quantities as
energy levels in the atom. The energy of the light released when an electron drops down from
a higher energy level to a lower energy level is the same as the difference in energy between the
two levels.

4.6.3 Electron configuration

Electrons are arranged in energy levels around the nucleus of an atom. Electrons that are in the
energy level that is closest to the nucleus, will have the lowest energy and those further away
will have a higher energy. Each energy level can only hold a certain number of electrons, and
an electron will only be found in the second energy level once the first energy level is full. The
same rule applies for the higher energy levels. You will need to learn the following rules:

• The 1st energy level can hold a maximum of 2 electrons
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• The 2nd energy level can hold a maximum of 8 electrons

• The 3rd energy level can hold a maximum of 8 electrons

• If the number of electrons in the atom is greater than 18, they will need to move to the
4th energy level.

In the following examples, the energy levels are shown as concentric circles around the central
nucleus.

1. Lithium

Lithium (Li) has an atomic number of 3, meaning that in a neutral atom, the number of
electrons will also be 3. The first two electrons are found in the first energy level, while
the third electron is found in the second energy level (figure 4.11).

second energy level

first energy level
electrons

nucleus, containing 3 pro-
tons and 4 neutrons

Figure 4.4: The arrangement of electrons in a lithium atom.

2. Fluorine

Fluorine (F) has an atomic number of 9, meaning that a neutral atom also has 9 electrons.
The first 2 electrons are found in the first energy level, while the other 7 are found in the
second energy level (figure 4.12).

Figure 4.5: The arrangement of electrons in a fluorine atom.

3. Argon

Argon has an atomic number of 18, meaning that a neutral atom also has 18 electrons.
The first 2 electrons are found in the first energy level, the next 8 are found in the second
energy level, and the last 8 are found in the third energy level (figure 4.6).

But the situation is slightly more complicated than this. Within each energy level, the electrons
move in orbitals. An orbital defines the spaces or regions where electrons move.

Definition: Atomic orbital
An atomic orbital is the region in which an electron may be found around a single atom.

There are different orbital shapes, but we will be dealing with only two. These are the ’s’ and ’p’
orbitals (there are also ’d’ and ’f’ orbitals). The first energy level contains only one ’s’ orbital,
the second energy level contains one ’s’ orbital and three ’p’ orbitals and the third energy level

60



CHAPTER 4. THE ATOM - GRADE 10 4.6

Figure 4.6: The arrangement of electrons in an argon atom.

also contains one ’s’ orbital and three ’p’ orbitals. Within each energy level, the ’s’ orbital is at
a lower energy than the ’p’ orbitals. This arrangement is shown in figure 4.7.

When we want to show how electrons are arranged in an atom, we need to remember the
following principles:

• Each orbital can only hold two electrons. Electrons that occur together in an orbital are
called an electron pair. These electrons spin in opposite directions around their own axes.

• An electron will always try to enter an orbital with the lowest possible energy.

• An electron will occupy an orbital on its own, rather than share an orbital with another
electron. An electron would also rather occupy a lower energy orbital with another electron,
before occupying a higher energy orbital. In other words, within one energy level, electrons
will fill an ’s’ orbital before starting to fill ’p’ orbitals.

The way that electrons are arranged in an atom is called its electron configuration.

Definition: Electron configuration
Electron configuration is the arrangement of electrons in an atom, molecule, or other physical
structure.

An element’s electron configuration can be represented using Aufbau diagrams or energy level
diagrams. An Aufbau diagram uses arrows to represent electrons. You can use the following
steps to help you to draw an Aufbau diagram:

1. Determine the number of electrons that the atom has.

2. Fill the ’s’ orbital in the first energy level (the 1s orbital) with the first two electrons.

3. Fill the ’s’ orbital in the second energy level (the 2s orbital) with the second two electrons.

4. Put one electron in each of the three ’p’ orbitals in the second energy level (the 2p orbitals),
and then if there are still electrons remaining, go back and place a second electron in each
of the 2p orbitals to complete the electron pairs.

5. Carry on in this way through each of the successive energy levels until all the electrons
have been drawn.

Important:
When there are two electrons in an orbital, the electrons are called an electron pair. If the
orbital only has one electron, this electron is said to be an unpaired electron. Electron
pairs are shown with arrows in opposite directions. This is because when two electrons
occupy the same orbital, they spin in opposite directions on their axes.
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1s

2s

3s

4s

2p

3p

E
N
E
R
G
Y

First main
energy level

Second main
energy level

Third main
energy level

Figure 4.7: The positions of the first ten orbits of an atom on an energy diagram. Note that
each block is able to hold two electrons.

62



CHAPTER 4. THE ATOM - GRADE 10 4.6

1s

2s

Figure 4.8: The electron configuration of Lithium, shown on an Aufbau diagram

An Aufbau diagram for the element Lithium is shown in figure 4.8.

A special type of notation is used to show an atom’s electron configuration. The notation de-
scribes the energy levels, orbitals and the number of electrons in each. For example, the electron
configuration of lithium is 1s2 2s1. The number and letter describe the energy level and orbital,
and the number above the orbital shows how many electrons are in that orbital.

Aufbau diagrams for the elements fluorine and argon are shown in figures 4.9 and 4.10 respec-
tively. Using standard notation, the electron configuration of fluorine is 1s2 2s2 2p5 and the
electron configuration of argon is 1s2 2s2 2p6 3s2 3p6.

1s

2s

3s

4s

2p

3p

Fluorine

E
N
E
R
G
Y

Figure 4.9: An Aufbau diagram showing the electron configuration of fluorine
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1s

2s

3s

4s

2p

3p

Argon
Figure 4.10: An Aufbau diagram showing the electron configuration of argon

4.6.4 Core and valence electrons

Electrons in the outermost energy level of an atom are called valence electrons. The electrons
that are in the energy shells closer to the nucleus are called core electrons. Core electrons are
all the electrons in an atom, excluding the valence electrons. An element that has its valence
energy level full is more stable and less likely to react than other elements with a valence energy
level that is not full.

Definition: Valence electrons
The electrons in the outer energy level of an atom

Definition: Core electrons
All the electrons in an atom, excluding the valence electrons

4.6.5 The importance of understanding electron configuration

By this stage, you may well be wondering why it is important for you to understand how electrons
are arranged around the nucleus of an atom. Remember that during chemical reactions, when
atoms come into contact with one another, it is the electrons of these atoms that will interact
first. More specifically, it is the valence electrons of the atoms that will determine how they
react with one another.

To take this a step further, an atom is at its most stable (and therefore unreactive) when all
its orbitals are full. On the other hand, an atom is least stable (and therefore most reactive)
when its valence electron orbitals are not full. This will make more sense when we go on to
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look at chemical bonding in a later chapter. To put it simply, the valence electrons are largely
responsible for an element’s chemical behaviour, and elements that have the same number of
valence electrons often have similar chemical properties.

Exercise: Energy diagrams and electrons

1. Draw Aufbau diagrams to show the electron configuration of each of the fol-
lowing elements:

(a) magnesium

(b) potassium

(c) sulfur

(d) neon

(e) nitrogen

2. Use the Aufbau diagrams you drew to help you complete the following table:

Element No. of
energy
levels

No. of
core elec-
trons

No. of
valence
electrons

Electron
config-
uration
(standard
notation)

Mg
K
S
Ne
N

3. Rank the elements used above in order of increasing reactivity. Give reasons
for the order you give.

Activity :: Group work : Building a model of an atom
Earlier in this chapter, we talked about different ’models’ of the atom. In science,

one of the uses of models is that they can help us to understand the structure of
something that we can’t see. In the case of the atom, models help us to build a
picture in our heads of what the atom looks like.

Models are often simplified. The small toy cars that you may have played with as
a child are models. They give you a good idea of what a real car looks like, but they
are much smaller and much simpler. A model cannot always be absolutely accurate
and it is important that we realise this so that we don’t build up a false idea about
something.

In groups of 4-5, you are going to build a model of an atom. Before you start,
think about these questions:

• What information do I know about the structure of the atom? (e.g. what parts
make it up? how big is it?)

• What materials can I use to represent these parts of the atom as accurately as
I can?

• How will I put all these different parts together in my model?

As a group, share your ideas and then plan how you will build your model. Once
you have built your model, discuss the following questions:

• Does our model give a good idea of what the atom actually looks like?
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• In what ways is our model inaccurate? For example, we know that electrons
move around the atom’s nucleus, but in your model, it might not have been
possible for you to show this.

• Are there any ways in which our model could be improved?

Now look at what other groups have done. Discuss the same questions for each
of the models you see and record your answers.

4.7 Ionisation Energy and the Periodic Table

4.7.1 Ions

In the previous section, we focused our attention on the electron configuration of neutral atoms.
In a neutral atom, the number of protons is the same as the number of electrons. But what
happens if an atom gains or loses electrons? Does it mean that the atom will still be part of the
same element?

A change in the number of electrons of an atom does not change the type of atom that it is.
However, the charge of the atom will change. If electrons are added, then the atom will become
more negative. If electrons are taken away, then the atom will become more positive. The atom
that is formed in either of these cases is called an ion. Put simply, an ion is a charged atom.

Definition: Ion
An ion is a charged atom. A positively charged ion is called a cation e.g. Na+, and a
negatively charged ion is called an anion e.g. F−. The charge on an ion depends on the
number of electrons that have been lost or gained.

Look at the following examples. Notice the number of valence electrons in the neutral atom,
the number of electrons that are lost or gained, and the final charge of the ion that is formed.

Lithium

A lithium atoms loses one electrons to form a positive ion (figure 4.11).

Li Li+

Li atom with 3 electrons Li+ ion with only 2 electrons

1 electron lost

Figure 4.11: The arrangement of electrons in a lithium ion.

In this example, the lithium atom loses an electron to form the cation Li+.

Fluorine
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F F−

1 electron gained

Figure 4.12: The arrangement of electrons in a fluorine ion.

A fluorine atom gains one electron to form a negative ion (figure 4.12).

Activity :: Investigation : The formation of ions

1. Use the diagram for lithium as a guide and draw similar diagrams to show how
each of the following ions is formed:

(a) Mg2+

(b) Na+

(c) Cl−

(d) O2−

2. Do you notice anything interesting about the charge on each of these ions?
Hint: Look at the number of valence electrons in the neutral atom and the
charge on the final ion.

Observations:

Once you have completed the activity, you should notice that:

• In each case the number of electrons that is either gained or lost, is the same as the number
of electrons that are needed for the atoms to achieve a full or an empty valence energy
level.

• If you look at an energy level diagram for sodium (Na), you will see that in a neutral
atom, there is only one valence electron. In order to achieve an empty valence level, and
therefore a more stable state for the atom, this electron will be lost.

• In the case of oxygen (O), there are six valence electrons. To fill the valence energy level,
it makes more sense for this atom to gain two electrons. A negative ion is formed.

4.7.2 Ionisation Energy

Ionisation energy is the energy that is needed to remove one electron from an atom. The ioni-
sation energy will be different for different atoms.

The second ionisation energy is the energy that is needed to remove a second electron from an
atom, and so on. As an energy level becomes more full, it becomes more and more difficult to
remove an electron and the ionisation energy increases. On the Periodic Table of the Elements,
a group is a vertical column of the elements, and a period is a horizontal row. In the periodic
table, ionisation energy increases across a period, but decreases as you move down a group.
The lower the ionisation energy, the more reactive the element will be because there is a greater
chance of electrons being involved in chemical reactions. We will look at this in more detail in
the next section.
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Exercise: The formation of ions
Match the information in column A with the information in column B by writing

only the letter (A to I) next to the question number (1 to 7)

1. A positive ion that has 3 less electrons
than its neutral atom

A. Mg2+

2. An ion that has 1 more electron than
its neutral atom

B. Cl−

3. The anion that is formed when
bromine gains an electron

C. CO2−
3

4. The cation that is formed from a mag-
nesium atom

D. Al3+

5. An example of a compound ion E. Br2−

6. A positive ion with the electron con-
figuration of argon

F. K+

7. A negative ion with the electron con-
figuration of neon

G. Mg+

H. O2−

I. Br−

4.8 The Arrangement of Atoms in the Periodic Table

The periodic table of the elements is a tabular method of showing the chemical elements.
Most of the work that was done to arrive at the periodic table that we know, can be attributed to
a man called Dmitri Mendeleev in 1869. Mendeleev was a Russian chemist who designed the
table in such a way that recurring (”periodic”) trends in the properties of the elements could be
shown. Using the trends he observed, he even left gaps for those elements that he thought were
’missing’. He even predicted the properties that he thought the missing elements would have
when they were discovered. Many of these elements were indeed discovered and Mendeleev’s
predictions were proved to be correct.

To show the recurring properties that he had observed, Mendeleev began new rows in his table
so that elements with similar properties were in the same vertical columns, called groups. Each
row was referred to as a period. One important feature to note in the periodic table is that all
the non-metals are to the right of the zig-zag line drawn under the element boron. The rest of
the elements are metals, with the exception of hydrogen which occurs in the first block of the
table despite being a non-metal.

4.8.1 Groups in the periodic table

A group is a vertical column in the periodic table, and is considered to be the most important
way of classifying the elements. If you look at a periodic table, you will see the groups numbered
at the top of each column. The groups are numbered from left to right as follows: 1, 2, then an
open space which contains the transition elements, followed by groups 3 to 8. These numbers
are normally represented using Roman numerals. In some periodic tables, all the groups are
numbered from left to right from number 1 to number 18. In some groups, the elements display
very similar chemical properties, and the groups are even given separate names to identify them.

The characteristics of each group are mostly determined by the electron configuration of the
atoms of the element.

• Group 1: These elements are known as the alkali metals and they are very reactive.
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Figure 4.13: A simplified diagram showing part of the Periodic Table

Activity :: Investigation : The properties of elements
Refer to figure 4.14.

1. Use a Periodic Table to help you to complete the last two diagrams for
sodium (Na) and potassium (K).

2. What do you notice about the number of electrons in the valence energy
level in each case?

3. Explain why elements from group 1 are more reactive than elements from
group 2 on the periodic table (Hint: Think back to ’ionisation energy’).

Hydrogen Lithium Sodium Potassium

Figure 4.14: Electron diagrams for some of the Group 1 elements, with sodium and potasium
incomplete; to be completed as an excersise.

• Group 2: These elements are known as the alkali earth metals. Each element only has
two valence electrons and so in chemical reactions, the group 2 elements tend to lose these
electrons so that the energy shells are complete. These elements are less reactive than
those in group 1 because it is more difficult to lose two electrons than it is to lose one.

• Group 3 elements have three valence electrons.

Important: The number of valence electrons of an element corresponds to its group number
on the periodic table.

• Group 7: These elements are known as the halogens. Each element is missing just one
electron from its outer energy shell. These elements tend to gain electrons to fill this shell,
rather than losing them.
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• Group 8: These elements are the noble gases. All of the energy shells of the halogens are
full, and so these elements are very unreactive.

Helium Neon

Figure 4.15: Electron diagrams for two of the noble gases, helium (He) and neon (Ne).

• Transition metals: The differences between groups in the transition metals are not usually
dramatic.

It is worth noting that in each of the groups described above, the atomic diameter of the
elements increases as you move down the group. This is because, while the number of valence
electrons is the same in each element, the number of core electrons increases as one moves down
the group.

4.8.2 Periods in the periodic table

A period is a horizontal row in the periodic table of the elements. Some of the trends that can
be observed within a period are highlighted below:

• As you move from one group to the next within a period, the number of valence electrons
increases by one each time.

• Within a single period, all the valence electrons occur in the same energy shell. If the
period increases, so does the energy shell in which the valence electrons occur.

• In general, the diameter of atoms decreases as one moves from left to right across a period.
Consider the attractive force between the positively charged nucleus and the negatively
charged electrons in an atom. As you move across a period, the number of protons in
each atom increases. The number of electrons also increases, but these electrons will still
be in the same energy shell. As the number of protons increases, the force of attraction
between the nucleus and the electrons will increase and the atomic diameter will decrease.

• Ionisation energy increases as one moves from left to right across a period. As the valence
electron shell moves closer to being full, it becomes more difficult to remove electrons. The
opposite is true when you move down a group in the table because more energy shells are
being added. The electrons that are closer to the nucleus ’shield’ the outer electrons from
the attractive force of the positive nucleus. Because these electrons are not being held
to the nucleus as strongly, it is easier for them to be removed and the ionisation energy
decreases.

• In general, the reactivity of the elements decreases from left to right across a period.

Exercise: Trends in ionisation energy
Refer to the data table below which gives the ionisation energy (in kJ.mol−1)

and atomic number (Z) for a number of elements in the periodic table:
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Z Ionisation energy Z Ionisation energy
1 1310 10 2072
2 2360 11 494
3 517 12 734
4 895 13 575
5 797 14 783
6 1087 15 1051
7 1397 16 994
8 1307 17 1250
9 1673 18 1540

1. Draw a line graph to show the relationship between atomic number (on the
x-axis) and ionisation energy (y-axis).

2. Describe any trends that you observe.

3. Explain why...

(a) the ionisation energy for Z=2 is higher than for Z=1

(b) the ionisation energy for Z=3 is lower than for Z=2

(c) the ionisation energy increases between Z=5 and Z=7

Exercise: Elements in the Periodic Table
Refer to the elements listed below:

Lithium (Li); Chlorine (Cl); Magnesium (Mg); Neon (Ne); Oxygen (O); Calcium
(Ca); Carbon (C)

Which of the elements listed above:

1. belongs to Group 1

2. is a halogen

3. is a noble gas

4. is an alkali metal

5. has an atomic number of 12

6. has 4 neutrons in the nucleus of its atoms

7. contains electrons in the 4th energy level

8. has only one valence electron

9. has all its energy orbitals full

10. will have chemical properties that are most similar

11. will form positive ions

4.9 Summary

• Much of what we know today about the atom, has been the result of the work of a
number of scientists who have added to each other’s work to give us a good understanding
of atomic structure.
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• Some of the important scientific contributors include J.J.Thomson (discovery of the elec-
tron, which led to the Plum Pudding Model of the atom), Ernest Rutherford (discovery
that positive charge is concentrated in the centre of the atom) and Niels Bohr (the
arrangement of electrons around the nucleus in energy levels).

• Because of the very small mass of atoms, their mass in measured in atomic mass units
(u). 1 u = 1,67 × 10−24 g.

• An atom is made up of a central nucleus (containing protons and neutrons), surrounded
by electrons.

• The atomic number (Z) is the number of protons in an atom.

• The atomic mass number (A) is the number of protons and neutrons in the nucleus of
an atom.

• The standard notation that is used to write an element, is A
ZX, where X is the element

symbol, A is the atomic mass number and Z is the atomic number.

• The isotope of a particular element is made up of atoms which have the same number
of protons as the atoms in the original element, but a different number of neutrons. This
means that not all atoms of an element will have the same atomic mass.

• The relative atomic mass of an element is the average mass of one atom of all the
naturally occurring isotopes of a particular chemical element, expressed in atomic mass
units. The relative atomic mass is written under the elements’ symbol on the Periodic
Table.

• The energy of electrons in an atom is quantised. Electrons occur in specific energy levels
around an atom’s nucleus.

• Within each energy level, an electron may move within a particular shape of orbital. An
orbital defines the space in which an electron is most likely to be found. There are different
orbital shapes, including s, p, d and f orbitals.

• Energy diagrams such as Aufbau diagrams are used to show the electron configuration
of atoms.

• The electrons in the outermost energy level are called valence electrons.

• The electrons that are not valence electrons are called core electrons.

• Atoms whose outermost energy level is full, are less chemically reactive and therefore more
stable, than those atoms whose outer energy level is not full.

• An ion is a charged atom. A cation is a positively charged ion and an anion is a negatively
charged ion.

• When forming an ion, an atom will lose or gain the number of electrons that will make its
valence energy level full.

• An element’s ionisation energy is the energy that is needed to remove one electron from
an atom.

• Ionisation energy increases across a period in the Periodic Table.

• Ionisation energy decreases down a group in the Periodic Table.

Exercise: Summary

1. Write down only the word/term for each of the following descriptions.

(a) The sum of the number of protons and neutrons in an atom
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(b) The defined space around an atom’s nucleus, where an electron is most
likely to be found

2. For each of the following, say whether the statement is True or False. If it is
False, re-write the statement correctly.

(a) 20
10Ne and 22

10Ne each have 10 protons, 12 electrons and 12 neutrons.

(b) The atomic mass of any atom of a particular element is always the same.

(c) It is safer to use helium gas rather than hydrogen gas in balloons.

(d) Group 1 elements readily form negative ions.

3. Multiple choice questions: In each of the following, choose the one correct
answer.

(a) The three basic components of an atom are:

i. protons, neutrons, and ions

ii. protons, neutrons, and electrons

iii. protons, neutrinos, and ions

iv. protium, deuterium, and tritium

(b) The charge of an atom is...

i. positive

ii. neutral

iii. negative

(c) If Rutherford had used neutrons instead of alpha particles in his scattering
experiment, the neutrons would...

i. not deflect because they have no charge

ii. have deflected more often

iii. have been attracted to the nucleus easily

iv. have given the same results

(d) Consider the isotope 234
92 U. Which of the following statements is true?

i. The element is an isotope of 234
94 Pu

ii. The element contains 234 neutrons

iii. The element has the same electron configuration as 238
92 U

iv. The element has an atomic mass number of 92

(e) The electron configuration of an atom of chlorine can be represented using
the following notation:

i. 1s2 2s8 3s7

ii. 1s2 2s2 2p6 3s2 3p5

iii. 1s2 2s2 2p6 3s2 3p6

iv. 1s2 2s2 2p5

4. The following table shows the first ionisation energies for the elements of period
1 and 2.

Period Element First ionisation energy (kJ.mol−1)

1 H 1312
He 2372
Li 520
Be 899
B 801
C 1086

2 N 1402
O 1314
F 1681
Ne 2081

(a) What is the meaning of the term first ionisation energy?

(b) Identify the pattern of first ionisation energies in a period.

(c) Which TWO elements exert the strongest attractive forces on their elec-
trons? Use the data in the table to give a reason for your answer.
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(d) Draw Aufbau diagrams for the TWO elements you listed in the previous
question and explain why these elements are so stable.

(e) It is safer to use helium gas than hydrogen gas in balloons. Which property
of helium makes it a safer option?

(f) ’Group 1 elements readily form positive ions’.
Is this statement correct? Explain your answer by referring to the table.
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Chapter 5

Physical and Chemical Change -
Grade 10

Matter is all around us. The desks we sit at, the air we breathe and the water we drink, are all
examples of matter. But matter doesn’t always stay the same. It can change in many different
ways. In this chapter, we are going to take a closer look at physical and chemical changes that
occur in matter.

5.1 Physical changes in matter

A physical change is one where the particles of the substances that are involved in the change
are not broken up in any way. When water is heated for example, the temperature and energy
of the water molecules increases and the liquid water evaporates to form water vapour. When
this happens, some kind of change has taken place, but the molecular structure of the water has
not changed. This is an example of a physical change.

H2O(l) → H2O(g)

Conduction (the transfer of energy through a material) is another example of a physical change.
As energy is transferred from one material to another, the energy of each material is changed,
but not its chemical makeup. Dissolving one substance in another is also a physical change.

Definition: Physical change
A change that can be seen or felt, but that doesn’t involve the break up of the particles in
the reaction. During a physical change, the form of matter may change, but not its identity.
A change in temperature is an example of a physical change.

There are some important things to remember about physical changes in matter:

• Arrangement of particles

When a physical change occurs, the particles (e.g. atoms, molecules) may re-arrange
themselves without actually breaking up in any way. In the example of evaporation that
we used earlier, the water molecules move further apart as their temperature (and therefore
energy) increases. The same would be true if ice were to melt. In the solid phase, water
molecules are packed close together in a very ordered way, but when the ice is heated, the
molecules overcome the forces holding them together and they move apart. Once again,
the particles have re-arranged themselves, but have not broken up.

H2O(s) → H2O(l)

75



5.2 CHAPTER 5. PHYSICAL AND CHEMICAL CHANGE - GRADE 10

solid liquid gas

Figure 5.1: The arrangement of water molecules in the three phases of matter

Figure 5.1 shows this more clearly. In each phase of water, the water molecule itself stays
the same, but the way the molecules are arranged has changed.

In a physical change, the total mass, the number of atoms and the number of molecules
will always stay the same.

• Energy changes

Energy changes may take place when there is a physical change in matter, but these energy
changes are normally smaller than the energy changes that take place during a chemical
change.

• Reversibility

Physical changes in matter are usually easier to reverse than chemical changes. Water
vapour for example, can be changed back to liquid water if the temperature is lowered.
Liquid water can be changed into ice by simply decreasing the temperature.

5.2 Chemical Changes in Matter

When a chemical change takes place, new substances are formed in a chemical reaction. These
new products may have very different properties from the substances that were there at the start
of the reaction.

The breakdown of copper(II) chloride to form copper and chlorine is an example of chemical
change. A simplified diagram of this reaction is shown in figure 5.2. In this reaction, the initial
substance is copper(II) chloride but, once the reaction is complete, the products are copper and
chlorine.

CuCl Cl Cu + Cl Cl

CuCl2 → Cu+ Cl2

Figure 5.2: The decomposition of copper(II) chloride to form copper and chlorine

Definition: Chemical change
The formation of new substances in a chemical reaction. One type of matter is changed
into something different.

There are some important things to remember about chemical changes:

• Arrangement of particles
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During a chemical change, the particles themselves are changed in some way. In the
example of copper (II) chloride that was used earlier, the CuCl2 molecules were split up into
their component atoms. The number of particles will change because each CuCl2 molecule
breaks down into one copper atom (Cu) and one chlorine molecule (Cl2). However, what
you should have noticed, is that the number of atoms of each element stays the same, as
does the total mass of the atoms. This will be discussed in more detail in a later section.

• Energy changes

The energy changes that take place during a chemical reaction are much greater than those
that take place during a physical change in matter. During a chemical reaction, energy
is used up in order to break bonds, and then energy is released when the new product is
formed. This will be discussed in more detail in section 5.3.

• Reversibility

Chemical changes are far more difficult to reverse than physical changes.

Two types of chemical reactions are decomposition reactions and synthesis reactions.

5.2.1 Decomposition reactions

A decomposition reaction occurs when a chemical compound is broken down into elements or
smaller compounds. The generalised equation for a decomposition reaction is:

AB → A+B

One example of such a reaction is the decomposition of hydrogen peroxide (figure 5.3) to form
hydrogen and oxygen according to the following equation:

2H2O2 → 2H2O +O2

O O

H H

O O

H H
O

H H

O

H H + O O

Figure 5.3: The decomposition of H2O2 to form H2O and O2

The decomposition of mercury (II) oxide is another example.

Activity :: Experiment : The decomposition of mercury (II) oxide
Aim:

To observe the decomposition of mercury (II) oxide when it is heated.
Note: Because this experiment involves mercury, which is a poisonous substance,

it should be done in a fume cupboard, and all the products of the reaction must be
very carefully disposed of.
Apparatus:

Mercury (II) oxide (an orange-red product); two test tubes; a large beaker; stop-
per and delivery tube; Bunsen burner; wooden splinter.
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Method:

1. Put a small amount of mercury (II) oxide in a test tube and heat it gently over
a Bunsen burner. Then allow it to cool. What do you notice about the colour
of the mercury (II) oxide?

2. Heat the test tube again, and note what happens. Do you notice anything on
the walls of the test tube? Record these observations.

3. Test for the presence of oxygen using a glowing splinter.

Results:

• During the first heating of mercury (II) oxide, the only change that took place
was a change in colour from orange-red to black and then back to its original
colour.

• When the test tube was heated again, deposits of mercury formed on the inner
surface of the test tube. What colour is this mercury?

• The glowing splinter burst into flame when it was placed in the test tube,
meaning that oxygen is present.

Conclusions:

When mercury oxide is heated, it decomposes to form mercury and oxygen. The
chemical decomposition reaction that takes place can be written as follows:

2HgO → 2Hg +O2

5.2.2 Synthesis reactions

During a synthesis reaction, a new product is formed from elements or smaller compounds.
The generalised equation for a synthesis reaction is as follows:

A+B → AB
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One example of a synthesis reaction is the burning of magnesium in oxygen to form magnesium
oxide. The equation for the reaction is:

2Mg +O2 → 2MgO

Figure 5.4 shows the chemical changes that take place at a microscopic level during this chemical
reaction.

Mg Mg + O O Mg O Mg O

Figure 5.4: The synthesis of magnesium oxide (MgO) from magnesium and oxygen

Activity :: Experiment : Chemical reactions involving iron and sulfur
Aim:

To demonstrate the synthesis of iron sulfide from iron and sulfur.
Apparatus:

5,6 g iron filings and 3,2 g powdered sulfur; porcelain dish; test tube; bunsen
burner

Method:

1. Before you carry out the experiment, write a balanced equation for the reaction
you expect will take place.

2. Measure the quantity of iron and sulfur that you need and mix them in a
porcelain dish.

3. Take some of this mixture and place it in the test tube. The test tube should
be about 1/3 full.

4. This reaction should ideally take place in a fume cupboard. Heat the test tube
containing the mixture over the Bunsen burner. Increase the heat if no reaction
takes place. Once the reaction begins, you will need to remove the test tube
from the flame. Record your observations.
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5. Wait for the product to cool before breaking the test tube with a hammer.
Make sure that the test tube is rolled in paper before you do this, otherwise
the glass will shatter everywhere and you may be hurt.

6. What does the product look like? Does it look anything like the original reac-
tants? Does it have any of the properties of the reactants (e.g. the magnetism
of iron)?

Results:

• After you removed the test tube from the flame, the mixture glowed a bright
red colour. The reaction is exothermic and produces energy.

• The product, iron sulfide, is a dark colour and does not share any of the
properties of the original reactants. It is an entirely new product.

Conclusions:

A synthesis reaction has taken place. The equation for the reaction is:

Fe+ S → FeS

Activity :: Investigation : Physical or chemical change?
Apparatus:
Bunsen burner, 4 test tubes, a test tube rack and a test tube holder, small

spatula, pipette, magnet, a birthday candle, NaCl (table salt), 0,1M AgNO3, 6M
HCl, magnesium ribbon, iron filings, sulfur.

Method:

1. Place a small amount of wax from a birthday candle into a test tube and heat
it over the bunsen burner until it melts. Leave it to cool.

2. Add a small spatula of NaCl to 5 ml water in a test tube and shake. Then use
the pipette to add 10 drops of AgNO3 to the sodium chloride solution. NOTE:
Please be carefull AgNO3 causes bad stains!!

3. Take a 5 cm piece of magnesium ribbon and tear it into 1 cm pieces. Place
two of these pieces into a test tube and add a few drops of 6M HCl. NOTE:
Be very careful when you handle this acid because it can cause major burns.

4. Take about 0,5 g iron filings and 0,5 g sulfur. Test each substance with a
magnet. Mix the two samples in a test tube, and run a magnet alongside the
outside of the test tube.

5. Now heat the test tube that contains the iron and sulfur. What changes do
you see? What happens now, if you run a magnet along the outside of the test
tube?

6. In each of the above cases, record your observations.

Questions:
Decide whether each of the following changes are physical or chemical and give

a reason for your answer in each case. Record your answers in the table below:

Description Physical or
chemical
change

Reason

melting candle wax
dissolving NaCl
mixing NaCl with AgNO3

tearing magnesium ribbon
adding HCl to magnesium ribbon
mixing iron and sulfur
heating iron and sulfur
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5.3 Energy changes in chemical reactions

All reactions involve some change in energy. During a physical change in matter, such as the
evaporation of liquid water to water vapour, the energy of the water molecules increases. How-
ever, the change in energy is much smaller than in chemical reactions.

When a chemical reaction occurs, some bonds will break, while new bonds may form. Energy
changes in chemical reactions result from the breaking and forming of bonds. For bonds to
break, energy must be absorbed. When new bonds form, energy will be released because the
new product has a lower energy than the ‘inbetween’ stage of the reaction when the bonds in
the reactants have just been broken.

In some reactions, the energy that must be absorbed to break the bonds in the reactants, is less
than the total energy that is released when new bonds are formed. This means that in the overall
reaction, energy is released. This type of reaction is known as an exothermic reaction. In other
reactions, the energy that must be absorbed to break the bonds in the reactants, is more than
the total energy that is released when new bonds are formed. This means that in the overall
reaction, energy must be absorbed from the surroundings. This type of reaction is known as an
endothermic reaction. In the earlier part of this chapter, most decomposition reactions were
endothermic, and heating was needed for the reaction to occur. Most of the synthesis reactions
were exothermic, meaning that energy was given off in the form of heat or light.

More simply, we can describe the energy changes that take place during a chemical reaction as:

Total energy absorbed to break bonds - Total energy released when new bonds form

So, for example, in the reaction...

2Mg +O2 → 2MgO

Energy is needed to break the O-O bonds in the oxygen molecule so that new Mg-O bonds can
be formed, and energy is released when the product (MgO) forms.

Despite all the energy changes that seem to take place during reactions, it is important to
remember that energy cannot be created or destroyed. Energy that enters a system will have
come from the surrounding environment, and energy that leaves a system will again become part
of that environment. This principle is known as the principle of conservation of energy.

Definition: Conservation of energy principle
Energy cannot be created or destroyed. It can only be changed from one form to another.

Chemical reactions may produce some very visible, and often violent, changes. An explosion,
for example, is a sudden increase in volume and release of energy when high temperatures are
generated and gases are released. For example, NH4NO3 can be heated to generate nitrous oxide.
Under these conditions, it is highly sensitive and can detonate easily in an explosive exothermic
reaction.

5.4 Conservation of atoms and mass in reactions

The total mass of all the substances taking part in a chemical reaction is conserved during a
chemical reaction. This is known as the law of conservation of mass. The total number of
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atoms of each element also remains the same during a reaction, although these may be arranged
differently in the products.

We will use two of our earlier examples of chemical reactions to demonstrate this:

• The decomposition of hydrogen peroxide into water and oxygen

2H2O2 → 2H2O +O2

O O

H H

O O

H H
O

H H

O

H H + O O

Left hand side of the equation

Total atomic mass = (4 × 1) + (4 × 16) = 68 u

Number of atoms of each element = (4 × H) + (4 × O)

Right hand side of the equation

Total atomic mass = (4 × 1) + (2 × 16) + (2 × 16) = 68 u

Number of atoms of each element = (4 × H) + (4 × O)

Both the atomic mass and the number of atoms of each element are conserved in the
reaction.

• The synthesis of magnesium and oxygen to form magnesium oxide

2Mg +O2 → 2MgO

Mg Mg + O O Mg O Mg O

Left hand side of the equation

Total atomic mass = (2 × 24,3) + (2 × 16) = 80,6 u

Number of atoms of each element = (2 × Mg) + (2 × O)

Right hand side of the equation

Total atomic mass = (2 × 24,3) + (2 × 16) = 80,6 u

Number of atoms of each element = (2 × Mg) + (2 × O)

Both the atomic mass and the number of atoms of each element are conserved in the
reaction.
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Activity :: Demonstration : The conservation of atoms in chemical reac-
tions

Materials:

• Coloured marbles or small balls to represent atoms. Each colour will represent
a different element.

• Prestik

Method:

1. Choose a reaction from any that have been used in this chapter or any other
balanced chemical reaction that you can think of. To help to explain this
activity, we will use the decomposition reaction of calcium carbonate to produce
carbon dioxide and calcium oxide.

CaCO3 → CO2 + CaO

2. Stick marbles together to represent the reactants and put these on one side of
your table. In this example you may for example join one red marble (calcium),
one green marble (carbon) and three yellow marbles (oxygen) together to form
the molecule calcium carbonate (CaCO3).

3. Leaving your reactants on the table, use marbles to make the product molecules
and place these on the other side of the table.

4. Now count the number of atoms on each side of the table. What do you notice?

5. Observe whether there is any difference between the molecules in the reactants
and the molecules in the products.

Discussion
You should have noticed that the number of atoms in the reactants is the same

as the number of atoms in the product. The number of atoms is conserved during
the reaction. However, you will also see that the molecules in the reactants and
products is not the same. The arrangement of atoms is not conserved during the
reaction.

5.5 Law of constant composition

In any given chemical compound, the elements always combine in the same proportion with each
other. This is the law of constant proportions.

The law of constant composition says that, in any particular chemical compound, all samples
of that compound will be made up of the same elements in the same proportion or ratio. For
example, any water molecule is always made up of two hydrogen atoms and one oxygen atom in
a 2:1 ratio. If we look at the relative masses of oxygen and hydrogen in a water molecule, we
see that 94% of the mass of a water molecule is accounted for by oxygen, and the remaining 6%
is the mass of hydrogen. This mass proportion will be the same for any water molecule.

This does not mean that hydrogen and oxygen always combine in a 2:1 ratio to form H2O.
Multiple proportions are possible. For example, hydrogen and oxygen may combine in differ-
ent proportions to form H2O2 rather than H2O. In H2O2, the H:O ratio is 1:1 and the mass
ratio of hydrogen to oxygen is 1:16. This will be the same for any molecule of hydrogen peroxide.
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5.6 Volume relationships in gases

In a chemical reaction between gases, the relative volumes of the gases in the reaction are present
in a ratio of small whole numbers if all the gases are at the same temperature and pressure. This
relationship is also known as Gay-Lussac’s Law.

For example, in the reaction between hydrogen and oxygen to produce water, two volumes of
H2 react with 1 volume of O2 to produce 2 volumes of H2O.

2H2 +O2 → 2H2O

In the reaction to produce ammonia, one volume of nitrogen gas reacts with three volumes of
hydrogen gas to produce two volumes of ammonia gas.

N2 + 3H2 → 2NH3

This relationship will also be true for all other chemical reactions.

5.7 Summary

• Matter does not stay the same. It may undergo physical or chemical changes.

• A physical change means that the form of matter may change, but not its identity. For
example, when water evaporates, the energy and the arrangement of water molecules will
change, but not the structure of the water molecules themselves.

• During a physical change, the arrangement of particlesmay change but the mass, number
of atoms and number of molecules will stay the same.

• Physical changes involve small changes in energy, and are easily reversible.

• A chemical change occurs when one or more substances change into other materials. A
chemical reaction involves the formation of new substances with different properties. For
example, carbon dioxide reacts with water to form carbonic acid.

CO2 +H2O → H2CO3

• A chemical change may involve a decomposition or synthesis reaction. During chemical
change, the mass and number of atoms is conserved, but the number of molecules is not
always the same.

• Chemical reactions involve larger changes in energy. During a reaction, energy is needed
to break bonds in the reactants, and energy is released when new products form. If the
energy released is greater than the energy absorbed, then the reaction is exothermic. If
the energy released is less than the energy absorbed, then the reaction is endothermic.
Chemical reactions are not easily reversible.

• Decomposition reactions are usually endothermic and synthesis reactions are usually
exothermic.

• The law of conservation of mass states that the total mass of all the substances taking
part in a chemical reaction is conserved and the number of atoms of each element in the
reaction does not change when a new product is formed.

• The conservation of energy principle states that energy cannot be created or destroyed,
it can only change from one form to another.

• The law of constant composition states that in any particular compound, all samples of
that compound will be made up of the same elements in the same proportion or ratio.

84



CHAPTER 5. PHYSICAL AND CHEMICAL CHANGE - GRADE 10 5.7

• Gay-Lussac’s Law states that in a chemical reaction between gases, the relative volumes
of the gases in the reaction are present in a ratio of small whole numbers if all the gases
are at the same temperature and pressure.

Exercise: Summary exercise

1. Complete the following table by saying whether each of the descriptions is an
example of a physical or chemical change:

Description Physical or
chemical

hot and cold water mix together
milk turns sour
a car starts to rust
food digests in the stomach
alcohol disappears when it is placed on your skin
warming food in a microwave
separating sand and gravel
fireworks exploding

2. For each of the following reactions, say whether it is an example of a synthesis
or decomposition reaction:

(a) (NH4)2CO3 → 2NH3 + CO2 +H2O

(b) 4Fe+ 3O2 → 2Fe2O3

(c) N2(g) + 3H2(g) → 2NH3

(d) CaCO3(s) → CaO + CO2

3. For the following equation:

CaCO3 → CO2 + CaO

Show that the ’law of conservation of mass’ applies.
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Chapter 6

Representing Chemical Change -
Grade 10

As we have already mentioned, a number of changes can occur when elements react with one
another. These changes may either be physical or chemical. One way of representing these
changes is through balanced chemical equations. A chemical equation describes a chemical
reaction by using symbols for the elements involved. For example, if we look at the reaction
between iron (Fe) and sulfur (S) to form iron sulfide (FeS), we could represent these changes
either in words or using chemical symbols:

iron + sulfur → iron sulfide

or

Fe+ S → FeS

Another example would be:

ammonia + oxygen → nitric oxide + water

or

4NH3 + 5O2 → 4NO + 6H2O

Compounds on the left of the arrow are called the reactants and these are needed for the reac-
tion to take place. In this equation, the reactants are ammonia and oxygen. The compounds on
the right are called the products and these are what is formed from the reaction.

In order to be able to write a balanced chemical equation, there are a number of important
things that need to be done:

1. Know the chemical symbols for the elements involved in the reaction

2. Be able to write the chemical formulae for different reactants and products

3. Balance chemical equations by understanding the laws that govern chemical change

4. Know the state symbols for the equation

We will look at each of these steps separately in the next sections.

6.1 Chemical symbols

It is very important to know the chemical symbols for common elements in the Periodic Table
so that you are able to write chemical equations and to recognise different compounds.
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Exercise: Revising common chemical symbols

• Write down the chemical symbols and names of all the elements that you know.

• Compare your list with another learner and add any symbols and names that
you don’t have.

• Spend some time, either in class or at home, learning the symbols for at least the
first twenty elements in the periodic table. You should also learn the symbols
for other common elements that are not in the first twenty.

• Write a short test for someone else in the class and then exchange tests with
them so that you each have the chance to answer one.

6.2 Writing chemical formulae

A chemical formula is a concise way of giving information about the atoms that make up a
particular chemical compound. A chemical formula shows each element by its symbol, and also
shows how many atoms of each element are found in that compound. The number of atoms (if
greater than one) is shown as a subscript.

Examples:

CH4 (methane)

Number of atoms: (1 x carbon) + (4 x hydrogen) = 5 atoms in one methane molecule

H2SO4 (sulfuric acid)

Number of atoms: (2 x hydrogen) + (1 x sulfur) + (4 x oxygen) = 7 atoms in one molecule of
sulfuric acid

A chemical formula may also give information about how the atoms are arranged in a molecule
if it is written in a particular way. A molecule of ethane, for example, has the chemical formula
C2H6. This formula tells us how many atoms of each element are in the molecule, but doesn’t
tell us anything about how these atoms are arranged. In fact, each carbon atom in the ethane
molecule is bonded to three hydrogen atoms. Another way of writing the formula for ethane is
CH3CH3. The number of atoms of each element has not changed, but this formula gives us
more information about how the atoms are arranged in relation to each other.

The slightly tricky part of writing chemical formulae comes when you have to work out the ratio
in which the elements combine. For example, you may know that sodium (Na) and chlorine (Cl)
react to form sodium chloride, but how do you know that in each molecule of sodium chloride
there is only one atom of sodium for every one atom of chlorine? It all comes down to the
valency of an atom or group of atoms. Valency is the number of bonds that an element can
form with another element. Working out the chemical formulae of chemical compounds using
their valency, will be covered in Grade 11. For now, we will use formulae that you already know.

6.3 Balancing chemical equations

6.3.1 The law of conservation of mass

In order to balance a chemical equation, it is important to understand the law of conservation
of mass.
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Definition: The law of conservation of mass
The mass of a closed system of substances will remain constant, regardless of the processes
acting inside the system. Matter can change form, but cannot be created or destroyed. For
any chemical process in a closed system, the mass of the reactants must equal the mass of
the products.

In a chemical equation then, the mass of the reactants must be equal to the mass of the prod-
ucts. In order to make sure that this is the case, the number of atoms of each element in the
reactants must be equal to the number of atoms of those same elements in the products. Some
examples are shown below:

Example 1:

Fe+ S → FeS

Fe + S Fe S

Reactants

Atomic mass of reactants = 55.8 u + 32.1 u = 87.9 u

Number of atoms of each element in the reactants: (1 × Fe) and (1 × S)

Products

Atomic mass of product = 55.8 u + 32.1 u = 87.9 u

Number of atoms of each element in the products: (1 × Fe) and (1 × S)

Since the number of atoms of each element is the same in the reactants and in the products, we
say that the equation is balanced.

Example 2:

H2 +O2 → H2O

H H + O O H O H

Reactants

Atomic mass of reactants = (1 + 1) + (16 + 16) = 34 u

Number of atoms of each element in the reactants: (2 × H) and (2 × O)

Product

Atomic mass of product = (1 + 1 + 16) = 18 u

Number of atoms of each element in the products: (2 × H) and (1 × O)

Since the total atomic mass of the reactants and the products is not the same, and since there are
more oxygen atoms in the reactants than there are in the product, the equation is not balanced.
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Example 3:

NaOH +HCl → NaCl +H2O

Na O H + H Cl Na Cl + H O H

Reactants

Atomic mass of reactants = (23 + 16 + 1) + (1 + 35.4) = 76.4 u

Number of atoms of each element in the reactants: (1 × Na) + (1 × O) + (2 × H) + (1 × Cl)

Products

Atomic mass of products = (23 + 35.4) + (1 + 1 + 16) = 76.4 u

Number of atoms of each element in the products: (1 × Na) + (1 × O) + (2 × H) + (1 × Cl)

Since the number of atoms of each element is the same in the reactants and in the products, we
say that the equation is balanced.

We now need to find a way to balance those equations that are not balanced so that the number
of atoms of each element in the reactants is the same as that for the products. This can be
done by changing the coefficients of the molecules until the atoms on each side of the arrow
are balanced. You will see later in Grade 11 that these coefficients tell us something about the
mole ratio in which substances react. They also tell us about the volume relationship between
gases in the reactants and products.

Important: Coefficients

Remember that if you put a number in front of a molecule, that number applies to the whole
molecule. For example, if you write 2H2O, this means that there are 2 molecules of water. In
other words, there are 4 hydrogen atoms and 2 oxygen atoms. If we write 3HCl, this means that
there are 3 molecules of HCl. In other words there are 3 hydrogen atoms and 3 chlorine atoms
in total. In the first example, 2 is the coefficient and in the second example, 3 is the coefficient.

6.3.2 Steps to balance a chemical equation

When balancing a chemical equation, there are a number of steps that need to be followed.

• STEP 1: Identify the reactants and the products in the reaction, and write their chemical
formulae.

• STEP 2: Write the equation by putting the reactants on the left of the arrow, and the
products on the right.

• STEP 3: Count the number of atoms of each element in the reactants and the number of
atoms of each element in the products.

• STEP 4: If the equation is not balanced, change the coefficients of the molecules until the
number of atoms of each element on either side of the equation balance.

• STEP 5: Check that the atoms are in fact balanced.

• STEP 6 (we will look at this a little later): Add any extra details to the equation e.g.
phase.
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Worked Example 9: Balancing chemical equations 1
Question: Balance the following equation:

Mg +HCl → MgCl2 +H2

Answer
Step 1 : Because the equation has been written for you, you can
move straight on to counting the number of atoms of each element
in the reactants and products
Reactants: Mg = 1 atom; H = 1 atom and Cl = 1 atom
Products: Mg = 1 atom; H = 2 atoms and Cl = 2 atoms

Step 2 : Balance the equation
The equation is not balanced since there are 2 chlorine atoms in the product
and only 1 in the reactants. If we add a coefficient of 2 to the HCl to
increase the number of H and Cl atoms in the reactants, the equation will
look like this:

Mg + 2HCl → MgCl2 +H2

Step 3 : Check that the atoms are balanced
If we count the atoms on each side of the equation, we find the following:
Reactants: Mg = 1; H = 2; Cl = 2
Products: Mg = 1; H = 2; Cl = 2
The equation is balanced. The final equation is:

Mg + 2HCl → MgCl2 +H2

Worked Example 10: Balancing chemical equations 2
Question: Balance the following equation:

CH4 +O2 → CO2 +H2O

Answer
Step 1 : Count the number of atoms of each element in the reactants
and products
Reactants: C = 1; H = 4; O = 2
Products: C = 1; H = 2; O = 3

Step 2 : Balance the equation
If we add a coefficient of 2 to H2O, then the number of hydrogen atoms in
the reactants will be 4, which is the same as for the reactants. The equation
will be:

CH4 +O2 → CO2 + 2H2O

Step 3 : Check that the atoms balance
Reactants: C = 1; H = 4; O = 2
Products: C = 1; H = 4; O = 4
You will see that, although the number of hydrogen atoms now balances,
there are more oxygen atoms in the products. You now need to repeat the
previous step. If we put a coefficient of 2 in front of O2, then we will increase
the number of oxygen atoms in the reactants by 2. The new equation is:

CH4 + 2O2 → CO2 + 2H2O
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When we check the number of atoms again, we find that the number of
atoms of each element in the reactants is the same as the number in the
products. The equation is now balanced.

Worked Example 11: Balancing chemical equations 3
Question: Nitrogen gas reacts with hydrogen gas to form ammonia. Write
a balanced chemical equation for this reaction.

Answer
Step 1 : Identify the reactants and the products, and write their
chemical formulae
The reactants are nitrogen (N2) and hydrogen (H2), and the product is
ammonia (NH3).

Step 2 : Write the equation so that the reactants are on the left and
products on the right of the arrow
The equation is as follows:

N2 +H2 → NH3

Step 3 : Count the atoms of each element in the reactants and
products
Reactants: N = 2; H = 2
Products: N = 1; H = 3

Step 4 : Balance the equation
In order to balance the number of nitrogen atoms, we could rewrite the
equation as:

N2 +H2 → 2NH3

Step 5 : Check that the atoms are balanced
In the above equation, the nitrogen atoms now balance, but the hydrogen
atoms don’t (there are 2 hydrogen atoms in the reactants and 6 in the
product). If we put a coefficient of 3 in front of the hydrogen (H2), then
the hydrogen atoms and the nitrogen atoms balance. The final equation is:

N2 + 3H2 → 2NH3

Worked Example 12: Balancing chemical equations 4
Question: In our bodies, sugar (C6H12O6) reacts with the oxygen we
breathe in to produce carbon dioxide, water and energy. Write the balanced
equation for this reaction.

Answer
Step 1 : Identify the reactants and products in the reaction, and write
their chemical formulae.

92



CHAPTER 6. REPRESENTING CHEMICAL CHANGE - GRADE 10 6.3

Reactants: sugar (C6H12O6) and oxygen (O2)
Products: carbon dioxide (CO2) and water (H2O)

Step 2 : Write the equation by putting the reactants on the left of
the arrow, and the products on the right

C6H12O6 +O2 → CO2 +H2O

Step 3 : Count the number of atoms of each element in the reactants
and the number of atoms of each element in the products
Reactants: C=6; H=12; O=8;
Products: C=1; H=2; O=3;

Step 4 : Change the coefficents of the molecules until the number of
atoms of each element on either side of the equation balance.
It is easier to start with carbon as it only appears once on each side. If we
add a 6 in front of CO2, the equation looks like this:

C6H12O6 +O2 → 6CO2 +H2O

Reactants: C=6; H=12; O=8;
Products: C=6; H=2; O=13;

Step 5 : Change the coefficients again to try to balance the equation.
Let’s try to get the number of hydrogens the same this time.

C6H12O6 +O2 → 6CO2 + 6H2O

Reactants: C=6; H=12; O=8;
Products: C=6; H=12; O=18;

Step 6 : Now we just need to balance the oxygen atoms.

C6H12O6 + 6O2 → 6CO2 + 6H2O

Reactants: C=6; H=12; O=18;
Products: C=6; H=12; O=18;

Exercise: Balancing simple chemical equations
Balance the following equations:

1. Hydrogen fuel cells are extremely important in the development of alternative
energy sources. Many of these cells work by reacting hydrogen and oxygen gases
together to form water, a reaction which also produces electricity. Balance the
following equation:

H2(g) +O2(g) → H2O(l)

2. The synthesis of ammonia (NH3), made famous by the German chemist Fritz
Haber in the early 20th century, is one of the most important reactions in the
chemical industry. Balance the following equation used to produce ammonia:

N2(g) +H2(g) → NH3(g)

3. Mg + P4 → Mg3P2

4. Ca+H2O → Ca(OH)2 +H2
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5. CuCO3 +H2SO4 → CuSO4 +H2O + CO2

6. CaCl2 +Na2CO3 → CaCO3 +NaCl

7. C12H22O11 +O2 → CO2 +H2O

8. Barium chloride reacts with sulphuric acid to produce barium sulphate and
hydrochloric acid.

9. Ethane (C2H6) reacts with oxygen to form carbon dioxide and steam.

10. Ammonium carbonate is often used as a smelling salt. Balance the following
reaction for the decomposition of ammonium carbonate:

(NH4)2CO3(s) → NH3(aq) + CO2(g) +H2O(l)

6.4 State symbols and other information

The state (phase) of the compounds can be expressed in the chemical equation. This is done by
placing the correct label on the right hand side of the formula. There are only four labels that
can be used:

1. (g) for gaseous compounds

2. (l) for liquids

3. (s) for solid compounds

4. (aq) for an aqueous (water) solution

Occasionally, a catalyst is added to the reaction. A catalyst is a substance that speeds up the
reaction without undergoing any change to itself. In a chemical equation, this is shown by using
the symbol of the catalyst above the arrow in the equation.

To show that heat was needed for the reaction, a Greek delta (∆) is placed above the arrow in
the same way as the catalyst.

Important: You may remember from chapter 5 that energy cannot be created or destroyed
during a chemical reaction but it may change form. In an exothermic reaction, ∆H is less
than zero, and in an endothermic reaction, ∆H is greater than zero. This value is often
written at the end of a chemical equation.

Worked Example 13: Balancing chemical equations 4
Question: Solid zinc metal reacts with aqueous hydrochloric acid to form
an aqueous solution of zinc chloride (ZnCl2)and hydrogen gas. Write a
balanced equation for this reaction.

Answer
Step 1 : Identify the reactants and products and their chemical for-
mulae
The reactants are zinc (Zn) and hydrochloric acid (HCl). The products are
zinc chloride (ZnCl2) and hydrogen (H2).

94



CHAPTER 6. REPRESENTING CHEMICAL CHANGE - GRADE 10 6.4

Step 2 : Place the reactants on the left of the equation and the
products on the right hand side of the arrow.

Zn+HCl → ZnCl2 +H2

Step 3 : Balance the equation
You will notice that the zinc atoms balance but the chlorine and hydrogen
atoms don’t. Since there are two chlorine atoms on the right and only one
on the left, we will give HCl a coefficient of 2 so that there will be two
chlorine atoms on each side of the equation.

Zn+ 2HCl → ZnCl2 +H2

Step 4 : Check that all the atoms balance
When you look at the equation again, you will see that all the atoms are
now balanced.

Step 5 : Ensure all details (e.g. state symbols) are added
In the initial description, you were told that zinc was a metal, hydrochloric
acid and zinc chloride were in aqueous solutions and hydrogen was a gas.

Zn(s) + 2HCl(aq) → ZnCl2(aq) +H2(g)

Worked Example 14: Balancing chemical equations 5 (advanced)
Question: Balance the following equation:

(NH4)2SO4 +NaOH → NH3 +H2O +Na2SO4

In this example, the first two steps are not necessary because the reactants
and products have already been given.

Answer
Step 1 : Balance the equation
With a complex equation, it is always best to start with atoms that appear
only once on each side i.e. Na, N and S atoms. Since the S atoms already
balance, we will start with Na and N atoms. There are two Na atoms on the
right and one on the left. We will add a second Na atom by giving NaOH
a coefficient of two. There are two N atoms on the left and one on the
right. To balance the N atoms, NH3 will be given a coefficient of two. The
equation now looks as follows:

(NH4)2SO4 + 2NaOH → 2NH3 +H2O +Na2SO4

Step 2 : Check that all atoms balance
N, Na and S atoms balance, but O and H atoms do not. There are six O
atoms and ten H atoms on the left, and five O atoms and eight H atoms
on the right. We need to add one O atom and two H atoms on the right to
balance the equation. This is done by adding another H2O molecule on the
right hand side. We now need to check the equation again:

(NH4)2SO4 + 2NaOH → 2NH3 + 2H2O +Na2SO4

The equation is now balanced.
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Exercise: Balancing more advanced chemical equations
Write balanced equations for each of the following reactions:

1. Al2O3(s) +H2SO4(aq) → Al2(SO4)3(aq) + 3H2O(l)

2. Mg(OH)2(aq) +HNO3(aq) → Mg(NO3)2(aq) + 2H2O(l)

3. Lead(ll)nitrate solution reacts with potassium iodide solution.

4. When heated, aluminium reacts with solid copper oxide to produce copper
metal and aluminium oxide (Al2O3).

5. When calcium chloride solution is mixed with silver nitrate solution, a white
precipitate (solid) of silver chloride appears. Calcium nitrate (Ca(NO3)2) is
also produced in the solution.

6.5 Summary

• A chemical equation uses symbols to describe a chemical reaction.

• In a chemical equation, reactants are written on the left hand side of the equation, and
the products on the right. The arrow is used to show the direction of the reaction.

• When representing chemical change, it is important to be able to write the chemical
formula of a compound.

• In any chemical reaction, the law of conservation of mass applies. This means that
the total atomic mass of the reactants must be the same as the total atomic mass of the
products. This also means that the number of atoms of each element in the reactants
must be the same as the number of atoms of each element in the product.

• If the number of atoms of each element in the reactants is the same as the number of
atoms of each element in the product, then the equation is balanced.

• If the number of atoms of each element in the reactants is not the same as the number of
atoms of each element in the product, then the equation is not balanced.

• In order to balance an equation, coefficients can be placed in front of the reactants and
products until the number of atoms of each element is the same on both sides of the
equation.

Exercise: Summary exercise
Balance each of the following chemical equations:

1. NH4 +H2O → NH4OH

2. Sodium chloride and water react to form sodium hydroxide, chlorine and hy-
drogen.

3. Propane is a fuel that is commonly used as a heat source for engines and homes.
Balance the following equation for the combustion of propane:

C3H8(l) +O2(g) → CO2(g) +H2O(l)

4. Aspartame, an artificial sweetener, has the formula C14H18N2O5. Write the
balanced equation for its combustion (reaction with O2) to form CO2 gas,
liquid H2O, and N2 gas.

96



CHAPTER 6. REPRESENTING CHEMICAL CHANGE - GRADE 10 6.5

5. Fe2(SO4)3 +K(SCN) → K3Fe(SCN)6 +K2SO4

6. Chemical weapons were banned by the Geneva Protocol in 1925. According
to this protocol, all chemicals that release suffocating and poisonous gases
are not to be used as weapons. White phosphorus, a very reactive allotrope
of phosphorus, was recently used during a military attack. Phosphorus burns
vigorously in oxygen. Many people got severe burns and some died as a result.
The equation for this spontaneous reaction is:

P4(s) +O2(g) → P2O5(s)

(a) Balance the chemical equation.

(b) Prove that the law of conservation of mass is obeyed during this chemical
reaction.

(c) Name the product formed during this reaction.

(d) Classify the reaction as endothermic or exothermic. Give a reason for your
answer.

(e) Classify the reaction as a synthesis or decomposition reaction. Give a
reason for your answer.

(DoE Exemplar Paper 2 2007)
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Chapter 7

The Water Cycle - Grade 10

7.1 Introduction

You may have heard the word ’cycle’ many times before. Think for example of the word ’bicycle’
or the regular ’cycle tests’ that you may have at school. A cycle is a series of events that repeats
itself. In the case of a bicycle, the wheel turns through a full circle before beginning the motion
again, while cycle tests happen regularly, normally every week or every two weeks. Because a
cycle repeats itself, it doesn’t have a beginning or an end.

Our Earth is a closed system. This means that it can exchange energy with its surroundings
(i.e. the rest of the solar system), but no new matter is brought into the system. For this reason,
it is important that all the elements and molecules on Earth are recycled so that they are never
completely used up. In the next two sections, we are going to take a closer look at two cycles
that are very important for life on Earth. They are the water cycle and the nitrogen cycle.

7.2 The importance of water

For many people, it is so easy to take water for granted, and yet life on Earth would not exist
were it not for this extraordinary compound. Not only is it believed that the first forms of life
actually started in water, but most of the cells in living organisms contain between 70% and
95% water. Here in the cells, water acts as a solvent and helps to transport vital materials such
as food and oxygen to where they are needed, and also removes waste products such as carbon
dioxide and ammonia from the body. For many animals and plants, water is their home. Think
for example of fish and amphibians that live either all or part of the time in rivers, dams and the
oceans. In other words, if water did not exist, life as we know it would not be possible.

Apart from allowing life to exist, water also has a number of other functions. Water shapes the
landscape around us by wearing away at rocks and also transports and deposits sediments on
floodplains and along coastal regions. Water also plays a very important role in helping to regu-
late Earth’s climate. We will discuss this again later in the chapter. As humans we use water in
our homes, in industry, in mining, irrigation and even as a source of electricitiy in hydro-electric
schemes. In fact, if we were able to view Earth from space, we would see that almost three
quarters of our planet’s surface is covered in water. It is because of this that Earth is sometimes
called the ’Blue Planet’. Most of this water is stored in the oceans, with the rest found in ice
(e.g. glaciers), groundwater (e.g. boreholes), surface water (e.g. rivers, lakes, estuaries, dams)
and in the atmosphere as clouds and water vapour.

Interesting

Fact

teresting

Fact
In the search for life on other planets, one of the first things that scientists look
for is water. However, most planets are either too close to the sun (and therefore
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too hot) for water to exist in liquid form, or they are too far away and therefore
too cold. So, even if water were to be found, the conditions are unlikely to allow
it to exist in a form that can support the diversity of life that we see on Earth.

7.3 The movement of water through the water cycle

The water cycle is the continuous movement of water over, above, and beneath the Earth’s
surface. As water moves, it changes phase between liquid (water), solid (ice) and gas (water
vapour). It is powered by solar energy and, because it is a cycle, it has no beginning or end.

Definition: The Water Cycle
The water cycle is the continuous circulation of water across the Earth. The water cycle is
driven by solar radiation and it includes the atmosphere, land, surface water and ground-
water. As water moves through the cycle, it changes state between liquid, solid, and gas
phases. The actual movement of water from one part of the cycle to another (e.g. from
river to ocean) is the result of processes such as evaporation, precipitation, infiltration and
runoff.

The movement of water through the water cycle is shown in figure 7.1. In the figure, each
process within this cycle is numbered. Each process will be described below.

1. The source of energy

The water cycle is driven by the sun, which provides the heat energy that is needed for
many of the other processes to take place.

2. Evaporation

When water on the earth’s surface is heated by the sun, the average energy of the water
molecules increases and some of the molecules are able to leave the liquid phase and
become water vapour. This is called evaporation. Evaporation is the change of water from
a liquid to a gas as it moves from the ground, or from bodies of water like the ocean,
rivers and dams, into the atmosphere.

3. Transpiration

Transpiration is the evaporation of water from the aerial parts of plants, especially the
leaves but also from the stems, flowers and fruits. This is another way that liquid water
can enter the atmosphere as a gas.

4. Condensation

When evaporation takes place, water vapour rises in the atmosphere and cools as the
altitude (height above the ground) increases. As the temperature drops, the energy of the
water vapour molecules also decreases, until the molecules don’t have enough energy to
stay in the gas phase. At this point, condensation occurs. Condensation is the change of
water from water vapour (gas) into liquid water droplets in the air. Clouds, fog and mist
are all examples of condensation. A cloud is actually a collection of lots and lots of tiny
water droplets. This mostly takes place in the upper atmosphere but can also take place
close to the ground if there is a significant temperature change.

Interesting

Fact

teresting

Fact
Have you ever tried breathing out on a very cold day? It looks as though
you are breathing out smoke! The moist air that you breathe out is much
warmer than the air outside your body. As this warm, moist air comes into
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Figure 7.1: The water cycle

contact with the colder air outside, its temperature drops very quickly and
the water vapour in the air you breathe out condenses. The ’smoke’ that
you see is actually formed in much the same way as clouds form in the upper
atmosphere.

5. Precipitation

Precipitation occurs when water falls back to the earth’s surface in the form of rain or
snow. Rain will fall as soon as a cloud becomes too saturated with water droplets. Snow is
similar to rain, except that it is frozen. Snow only falls if temperatures in the atmosphere
are around freezing. The freezing point of water is 00C.

6. Infiltration

If precipitation occurs, some of this water will filter into the soil and collect underground.
This is called infiltration. This water may evaporate again from the soil at a later stage,
or the underground water may seep into another water body.
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7. Surface runoff

This refers to the many ways that water moves across the land. This includes surface runoff
such as when water flows along a road and into a drain, or when water flows straight across
the sand. It also includes channel runoff when water flows in rivers and streams. As it
flows, the water may infiltrate into the ground, evaporate into the air, become stored in
lakes or reservoirs, or be extracted for agricultural or other human uses.

Important: It is important to realise that the water cycle is all about energy exchanges.
The sun is the original energy source. Energy from the sun heats the water and causes
evaporation. This energy is stored in water vapour as latent heat. When the water vapour
condenses again, the latent heat is released, and helps to drive circulation in the atmosphere.
The liquid water falls to earth, and will evaporate again at a later stage. The atmospheric
circulation patterns that occur because of these exchanges of heat are very important in
influencing climate patterns.

Activity :: Experiment : The Water Cycle
Materials:
Tile or piece of plastic (e.g. lid of ice-cream container) to make a hill slope; glass

fish tank with a lid; beaker with ice cubes; lamp; water
Set up a model of the water cycle as follows:

lamp

ice cubes

waterslope

glass tank

1. Lean the plastic against one side so that it creates a ’hill slope’ as shown in the
diagram.

2. Pour water into the bottom of the tank until about a quarter of the hill slope
is covered.

3. Close the fish tank lid.

4. Place the beaker with ice on the lid directly above the hill slope.

5. Turn the lamp on and position it so that it shines over the water.

6. Leave the model like this for 20-30 minutes and then observe what happens.
Make sure that you don’t touch the lamp as it will be very hot!

Observation questions:

1. Which parts of the water cycle can you see taking place in the model?

2. Which parts of the water cycle are not represented in the model?
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3. Can you think of how those parts that are not shown could be represented?

4. What is the energy source in the model? What would the energy source be in
reality?

5. What do you think the function of the ice is in the beaker?

7.4 The microscopic structure of water

In many ways, water behaves very differently from other liquids. These properties are directly
related to the microscopic structure of water, and more specifically to the shape of the molecule
and its polar nature, and to the bonds that hold water molecules together.

7.4.1 The polar nature of water

Every water molecule is made up of one oxygen atom that is bonded to two hydrogen atoms.
When atoms bond, the nucleus of each atom has an attractive force on the electrons of the other
atoms. This ’pull’ is stronger in some atoms than in others and is called the electronegativity of
the atom. In a water molecule, the oxygen atom has a higher electronegativty than the hydrogen
atoms and therefore attracts the electrons more strongly. The result is that the oxygen atom
has a slightly negative charge and the two hydrogen atoms each have a slightly positive charge.
The water molecule is said to be polar because the electrical charge is not evenly distributed
in the molecule. One part of the molecule has a different charge to other parts. You will learn
more about this in Grade 11.

O

HH

Oxygen

(slightly negative charge)

Hydrogen

(slightly positive charge)

Hydrogen

(slightly positive charge)

Figure 7.2: Diagrams showing the structure of a water molecule. Each molecule is made up of
two hydrogen atoms that are attached to one oxygen atom.

7.4.2 Hydrogen bonding in water molecules

In every water molecule, the forces that hold the individual atoms together are called in-
tramolecular forces. But there are also forces between different water molecules. These are
called intermolecular forces (figure 7.3). You will learn more about these at a later stage, but
for now it is enough to know that in water, molecules are held together by hydrogen bonds.
Hydrogen bonds are a much stronger type of intermolecular force than those found in many
other substances, and this affects the properties of water.

Important: Intramolecular and intermolecular forces
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If you find these terms confusing, remember that ’intra’ means within (i.e. the forces within
a molecule). An introvert is someone who doesn’t express emotions and feelings outwardly.
They tend to be quieter and keep to themselves. ’Inter’ means between (i.e. the forces between
molecules). An international cricket match is a match between two different countries.

O

HH

O

HH

O

HH

intermolecular forces

intramolecular forces

Figure 7.3: Intermolecular and intramolecular forces in water. Note that the diagram on the
left only shows intermolecular forces. The intramolecular forces are between the atoms of each
water molecule.

7.5 The unique properties of water

Because of its polar nature and the strong hydrogen bonds between its molecules, water has
some special properties that are quite different to those of other substances.

1. Absorption of infra-red radiation

The polar nature of the water molecule means that it is able to absorb infra-red radiation
(heat) from the sun. As a result of this, the oceans and other water bodies act as heat
reservoirs, and are able to help moderate the Earth’s climate.

2. Specific heat

Definition: Specific heat
Specific heat is the amount of heat energy that is needed to increase the temperature of a
substance by one degree.

Water has a high specific heat, meaning that a lot of energy must be absorbed by water
before its temperature changes.

Activity :: Demonstration : The high specific heat of water

(a) Pour about 100 ml of water into a glass beaker.

(b) Place the beaker on a stand and heat it over a bunsen burner for about 2
minutes.

(c) After this time, carefully touch the side of the beaker (Make sure you touch
the glass very lightly because it will be very hot and may burn you!). Then
use the end of a finger to test the temperature of the water.
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What do you notice? Which of the two (glass or water) is the hottest?

You have probably observed this phenomenon if you have boiled water in a pot on the
stove. The metal of the pot heats up very quickly, and can burn your fingers if you touch
it, while the water may take several minutes before its temperature increases even slightly.
How can we explain this in terms of hydrogen bonding? Remember that increasing the
temperature of a substance means that its particles will move more quickly. However,
before they can move faster, the bonds between them must be broken. In the case of
water, these bonds are strong hydrogen bonds, and so a lot of energy is needed just to
break these, before the particles can start moving faster.

It is the high specific heat of water and its ability to absorb infra-red radiation that allows
it to regulate climate. Have you noticed how places that are closer to the sea have less
extreme daily temperatures than those that are inland? During the day, the oceans heat
up slowly, and so the air moving from the oceans across land is cool. Land temperatures
are cooler than they would be if they were further from the sea. At night, the oceans lose
the heat that they have absorbed very slowly, and so sea breezes blowing across the land
are relatively warm. This means that at night, coastal regions are generally slightly warmer
than areas that are further from the sea.

By contrast, places further from the sea experience higher maximum temperatures, and
lower minimum temperatures. In other words, their temperature range is higher than that
for coastal regions. The same principle also applies on a global scale. The large amount of
water across Earth’s surface helps to regulate temperatures by storing infra-red radiation
(heat) from the sun, and then releasing it very slowly so that it never becomes too hot or
too cold, and life is able to exist comfortably. In a similar way, water also helps to keep
the temperature of the internal environment of living organisms relatively constant. This
is very important. In humans, for example, a change in body temperature of only a few
degrees can be deadly.

3. Melting point and boiling point

The melting point of water is 00C and its boiling point is 1000C. This large difference
between the melting and boiling point is very important because it means that water can
exist as a liquid over a large range of temperatures. The three phases of water are shown
in figure 7.4.

4. High heat of vaporisation

Definition: Heat of vaporisation
Heat of vaporisation is the energy that is needed to change a given quantity of a substance
into a gas.

The strength of the hydrogen bonds between water molecules also means that it has a
high heat of vaporisation. ’Heat of vaporisation’ is the heat energy that is needed to
change water from the liquid to the gas phase. Because the bonds between molecules are
strong, water has to be heated to 1000C before it changes phase. At this temperature,
the molecules have enough energy to break the bonds that hold the molecules together.
The heat of vaporisation for water is 40.65 kJ/mol. It is very lucky for life on earth that
water does have a high heat of vaporisation. Can you imagine what a problem it would
be if water’s heat of vaporisation was much lower? All the water that makes up the cells
in our bodies would evaporate and most of the water on earth would no longer be able to
exist as a liquid!

5. Less dense solid phase

Another unusual property of water is that its solid phase (ice) is less dense than its liquid
phase. You can observe this if you put ice into a glass of water. The ice doesn’t sink to

105



7.5 CHAPTER 7. THE WATER CYCLE - GRADE 10

freezing
melting

ev
ap
or
at
io
n

co
nd
en
sa
ti
on sublim

ation

re-sublim
ation

Liquid Solid (ice)

Gas (water vapour)

Figure 7.4: Changes in phase of water

the bottom of the glass, but floats on top of the liquid. This phenomenon is also related to
the hydrogen bonds between water molecules. While other materials contract when they
solidify, water expands. The ability of ice to float as it solidifies is a very important factor
in the environment. If ice sank, then eventually all ponds, lakes, and even the oceans would
freeze solid as soon as temperatures dropped below freezing, making life as we know it
impossible on Earth. During summer, only the upper few inches of the ocean would thaw.
Instead, when a deep body of water cools, the floating ice insulates the liquid water below,
preventing it from freezing and allowing life to exist under the frozen surface.

Figure 7.5: Ice cubes floating in water

Interesting

Fact

teresting

Fact
Antarctica, the ’frozen continent’, has one of the world’s largest and deepest
freshwater lakes. And this lake is hidden beneath 4 kilometres of ice! Lake
Vostok is 200 km long and 50 km wide. The thick, glacial blanket of ice acts
as an insulator, preventing the water from freezing.

6. Water as a solvent
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Water is also a very good solvent, meaning that it is easy for other substances to dissolve
in it. It is very seldom, in fact, that we find pure water. Most of the time, the water that
we drink and use has all kinds of substances dissolved in it. It is these that make water
taste different in different areas. So why, then, is it important that water is such a good
solvent? We will look at just a few examples.

• Firstly, think about the animals and plants that live in aquatic environments such
as rivers, dams or in the sea. All of these living organisms either need oxygen for
respiration or carbon dioxide for photosynthesis, or both. How do they get these
gases from the water in which they live? Oxygen and carbon dioxide are just two
of the substances that dissolve easily in water, and this is how plants and animals
obtain the gases that they need to survive. Instead of being available as gases in the
atmosphere, they are present in solution in the surrounding water.

• Secondly, consider the fact that all plants need nitrogen to grow, and that they absorb
this nitrogen from compounds such as nitrates and nitrates that are present in the
soil. The question remains, however, as to how these nitrates and nitrites are able to
be present in the soil at all, when most of the Earth’s nitrogen is in a gaseous form
in the atmosphere. Part of the answer lies in the fact that nitrogen oxides, which
are formed during flashes of lightning, can be dissolved in rainwater and transported
into the soil in this way, to be absorbed by plants. The other part of the answer lies
in the activities of nitrogen-fixing bacteria in the soil, but this is a topic that we will
return to in a later section.

It should be clear now, that water is an amazing compound, and that without its unique prop-
erties, life on Earth would definitely not be possible.

Exercise: The properties of water

1. A learner returns home from school on a hot afternoon. In order to get cold
water to drink, she adds ice cubes to a glass of water. She makes the following
observations:

• The ice cubes float in the water.

• After a while the water becomes cold and the ice cubes melt.

(a) What property of ice cubes allows them to float in the water?

(b) Briefly explain why the water gets cold when the ice cubes melt.

(c) Briefly describe how the property you mentioned earlier affects the survival
of aquatic life during winter.

2. Which properties of water allow it to remain in its liquid phase over a large
temperature range? Explain why this is important for life on earth.

7.6 Water conservation

Water is a very precious substance and yet far too often, earth’s water resources are abused and
taken for granted. How many times have you walked past polluted rivers and streams, or seen
the flow of water in a river reduced to almost nothing because of its extraction for industrial and
other uses? And if you were able to test the quality of the water you see, you would probably
be shocked. Often our water resources are contaminated with chemicals such as pesticides and
fertilisers. If water is to continue playing all the important functions that were discussed earlier,
it is vital that we reduce the impact of humans on these resources.
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Activity :: Group work : Human impacts on the water cycle
Read the following extract from an article, entitled ’The Effects of Urbanisation

on the Water Cycle’ by Susan Donaldson, and then answer the questions that follow.

As our communities grow, we notice many visible changes including hous-
ing developments, road networks, expansion of services and more. These
changes have an impact on our precious water resources, with pollution
of water being one of many such impacts. To understand these impacts
you will need to have a good knowledge of the water cycle!
It is interesting to note that the oceans contain most of earth’s water
(about 97%). Of the freshwater supplies on earth, 78% is tied up in polar
ice caps and snow, leaving only a very small fraction available for use by
humans. Of the available fresh water, 98% is present as groundwater,
while the remaining 2% is in the form of surface water. Because our
usable water supply is so limited, it is vitally important to protect water
quality. Within the water cycle, there is no ’new’ water ever produced on
the earth. The water we use today has been in existence for billions of
years. The water cycle continually renews and refreshes this finite water
supply.
So how exactly does urbanisation affect the water cycle? The increase
in hard surfaces (e.g. roads, roofs, parking lots) decreases the amount
of water that can soak into the ground. This increases the amount of
surface runoff. The runoff water will collect many of the pollutants that
have accumulated on these surfaces (e.g. oil from cars) and carry them
into other water bodies such as rivers or the ocean. Because there is less
infiltration, peak flows of stormwater runoff are larger and arrive earlier,
increasing the size of urban floods. If groundwater supplies are reduced
enough, this may affect stream flows during dry weather periods because
it is the groundwater that seeps to the surface at these times.
Atmospheric pollution can also have an impact because condensing water
vapour will pick up these pollutants (e.g. SO2, CO2 and NO2) and return
them to earth into other water bodies. However, while the effects of
urbanisation on water quality can be major, these impacts can be reduced
if wise decisions are made during the process of development.

Questions

1. In groups, try to explain...

(a) what is meant by ’urbanisation’

(b) how urbanisation can affect water quality

2. Explain why it is so important to preserve the quality of our water supplies.

3. The article gives some examples of human impacts on water quality. In what
other ways do human activities affect water quality?

4. What do you think some of the consequences of these impacts might be for
humans and other forms of life?

5. Imagine that you are the city manager in your own city or the city closest to
you. What changes would you introduce to try to protect the quality of water
resources in your urban area?

6. What measures could be introduced in rural areas to protect water quality?

Apart from the pollution of water resources, the overuse of water is also a problem. In looking
at the water cycle, it is easy sometimes to think that water is a never-ending resource. In a sense
this is true because water cannot be destroyed. However, the availability of water may vary from
place to place. In South Africa for example, many regions are extremely dry and receive very
little rainfall. The same is true for many other parts of the world, where the scarcity of water
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is a life and death issue. The present threat of global warming is also likely to affect water
resources. Some climate models suggest that rising temperatures could increase the variability
of climate and decrease rainfall in South Africa. With this in mind, and remembering that South
Africa is already a dry country, it is vitally important that we manage our water use carefully. In
addition to this, the less water there is available, the more likely it is that water quality will also
decrease. A decrease in water quality limits how water can be used and developed.

At present, the demands being placed on South Africa’s water resources are large. Table 7.1
shows the water requirements that were predicted for the year 2000. The figures in the table
were taken from South Africa’s National Water Resource Strategy, produced by the Department
of Water Affairs and Forestry in 2004. In the table, ’rural’ means water for domestic use and
stock watering in rural areas, while ’urban’ means water for domestic, industrial and commercial
use in the urban area. ’Afforestation’ is included because many plantations reduce stream flow
because of the large amounts of water they need to survive.

Table 7.1: The predicted water requirements for various water management areas in South Africa
for 2000 (million m3/annum)

Water management
area

Irrigation Urban Rural Mining
and bulk
industrial

Power
gener-
ation

AfforestationTotal

Limpopo 238 34 28 14 7 1 322
Thukela 204 52 31 46 1 0 334
Upper Vaal 114 635 43 173 80 0 1045
Upper Orange 780 126 60 2 0 0 968
Breede 577 39 11 0 0 6 633

Country total 7920 2897 574 755 297 428 12871

Activity :: Case Study : South Africa’s water requirements
Refer to table 7.1 and then answer the following questions:

1. Which water management area in South Africa has the highest need for water...

(a) in the mining and industry sector?

(b) for power generation?

(c) in the irrigation sector?

(d) Suggest reasons for each of your answers above.

2. For South Africa as a whole...

(a) Which activity uses the most water?

(b) Which activity uses the least water?

3. Complete the following table, by calculating the percentage (%) that each
activity contributes to the total water requirements in South Africa for the year
2000.

Water use activity % of SA’s total water requirements
Irrigation
Urban
Rural
Mining and bulk industry
Power generation
Afforestation
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Table 7.2: The available water yield in South Africa in 2000 for various water management areas
(million m3/annum)

Water management
area

Surface
water

Ground Irrigation Urban Mining
and
bulk
indus-
trial

Total lo-
cal yield

Limpopo 160 98 8 15 0 281
Thukela 666 15 23 24 9 737
Upper Vaal 598 32 11 343 146 1130
Upper Orange 4311 65 34 37 0 4447
Breede 687 109 54 16 0 866

Country total 10240 1088 675 970 254 13227

Now look at table 7.2, which shows the amount of water available in South Africa during 2000.
In the table, ’usable return flow’ means the amount of water that can be reused after it has been
used for irrigation, urban or mining.

Activity :: Case Study : Water conservation
Refer to table 7.2 and then answer the following questions:

1. Explain what is meant by...

(a) surface water

(b) ground water

2. Which water management area has the...

(a) lowest surface water yield?

(b) highest surface water yield?

(c) lowest total yield?

(d) highest total yield?

3. Look at the country’s total water requirements for 2000 and the total available
yield.

(a) Calculate what percentage of the country’s water yield is already being
used up.

(b) Do you think that the country’s total water requirements will increase or
decrease in the coming years? Give a reason for your answer.

4. South Africa is already placing a huge strain on existing water resources. In
groups of 3-4, discuss ways that the country’s demand for water could be
reduced. Present your ideas to the rest of the class for discussion.

7.7 Summary

• Water is critical for the survival of life on Earth. It is an important part of the cells of
living organisms and is used by humans in homes, industry, mining and agriculture.

• Water moves between the land and sky in the water cycle. The water cycle describes
the changes in phase that take place in water as it circulates across the Earth. The water
cycle is driven by solar radiation.
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• Some of the important processes that form part of the water cycle are evaporation, transpi-
ration, condensation, precipitation, infiltration and surface runoff. Together these processes
ensure that water is cycled between the land and sky.

• It is the microscopic structure of water that determines its unique properties.

• Water molecules are polar and are held together by hydrogen bonds. These characteristics
affect the properties of water.

• Some of the unique properties of water include its ability to absorb infra-red radiation, its
high specific heat, high heat of vaporisation and the fact that the solid phase of water is
less dense that its liquid phase.

• These properties of water help it to sustain life on Earth by moderating climate, regulating
the internal environment of living organisms and allowing liquid water to exist below ice,
even if temperatures are below zero.

• Water is also a good solvent. This property means that it is a good transport medium
in the cells of living organisms, and that it can dissolve gases and other compounds that
may be needed by aquatic plants and animals.

• Human activities threaten the quality of water resources through pollution and altered
runoff patterns.

• As human populations grow, there is a greater demand for water. In many areas, this
demand exceeds the amount of water available for use. Managing water wisely is important
in ensuring that there will always be water available both for human use, and to maintain
natural ecosystems.

Exercise: Summary Exercise

1. Give a word or term for each of the following phrases:

(a) The continuous circulation of water across the earth.

(b) The change in phase of water from gas to liquid.

(c) The movement of water across a land surface.

(d) The temperature at which water changes from liquid to gas.

2. In each of the following multiple choice questions, choose the one correct answer
from the list provided.

(a) Many of the unique properties of water (e.g. its high specific heat and
high boiling point) are due to:

i. strong covalent bonds between the hydrogen and oxygen atoms in each
water molecule

ii. the equal distribution of charge in a water molecule

iii. strong hydrogen bonds between water molecules

iv. the linear arrangement of atoms in a water molecule

(b) Which of the following statements is false?

i. Most of the water on earth is in the oceans.

ii. The hardening of surfaces in urban areas results in increased surface
runoff.

iii. Water conservation is important because water cannot be recycled.

iv. Irrigation is one of the largest water users in South Africa.

3. The sketch below shows a process that leads to rainfall in town X. The town
has been relying only on rainfall for its water supply because it has no access
to rivers or tap water. A group of people told the community that they will
never run out of rainwater because it will never stop raining.
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P1

Cloud

Sea

P2

Town X

(a) List the processes labelled P1 and P2 that lead to rainfall in town X.

(b) Is this group of people correct in saying that town X will never run out of
rainwater? Justify your answer using the sketch.
Recently, the amount of rainwater has decreased significantly. Various
reasons have been given to explain the drought. Some of the community
members are blaming this group who told them that it will never stop
raining.

(c) What scientific arguments can you use to convince the community mem-
bers that this group of people should not be blamed for the drought?

(d) What possible strategies can the community leaders adopt to ensure that
they have a regular supply of water.
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Global Cycles: The Nitrogen Cycle
- Grade 10

8.1 Introduction

The earth’s atmosphere is made up of about 78% nitrogen, making it the largest pool of this
gas. Nitrogen is essential for many biological processes. It is in all amino acids, proteins and
nucleic acids. As you will see in a later chapter, these compounds are needed to build tissues,
transport substances around the body, and control what happens in living organisms. In plants,
much of the nitrogen is used in chlorophyll molecules which are needed for photosynthesis and
growth.

So, if nitrogen is so essential for life, how does it go from being a gas in the atmosphere to being
part of living organisms such as plants and animals? The problem with nitrogen is that it is an
’inert’ gas, which means that it is unavailable to living organisms in its gaseous form. This is
because of the strong triple bond between its atoms that makes it difficult to break. Something
needs to happen to the nitrogen gas to change it into a form that it can be used. And at some
later stage, these new compounds must be converted back into nitrogen gas so that the amount
of nitrogen in the atmosphere stays the same. This process of changing nitrogen into different
forms is called the nitrogen cycle (figure 8.1).

Definition: The nitrogen cycle
The nitrogen cycle is a biogeochemical cycle that describes how nitrogen and nitrogen-
containing compounds are changed in nature.

Very broadly, the nitrogen cycle is made up of the following processes:

• Nitrogen fixation - The process of converting inert nitrogen gas into more useable nitrogen
compounds such as ammonia.

• Nitrification - The conversion of ammonia into nitrites and then into nitrates, which can
be absorbed and used by plants.

• Denitrification - The conversion of nitrates back into nitrogen gas in the atmosphere.

We are going to look at each of these processes in more detail.

8.2 Nitrogen fixation

Nitrogen fixation is needed to change gaseous nitrogen into forms such as ammonia that are more
useful to living organisms. Some fixation occurs in lightning strikes and in industrial processes,
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Figure 8.1: A simplified diagram of the nitrogen cycle

but most fixation is done by different types of bacteria living either in the soil or in parts of the
plants.

1. Biological fixation

Some bacteria are able to fix nitrogen. They use an enzyme called nitrogenase to combine
gaseous nitrogen with hydrogen to form ammonia. The bacteria then use some of this
ammonia to produce their own organic compounds, while what is left of the ammonia
becomes available in the soil.

Some of these bacteria are free-living, in other words they live in the soil. Others live in
the root nodules of legumes (e.g. soy, peas and beans). Here they form a mutualistic
relationship with the plant. The bacteria get carbohydrates (food) from the plant and,
in exchange, produce ammonia which can be converted into nitrogen compounds that are
essential for the survival of the plant. In nutrient-poor soils, planting lots of legumes can
help to enrich the soil with nitrogen compounds.

A simplified equation for biological nitrogen fixation is:

N2 + 8H+ + 8e− → 2NH3 +H2

In this equation the 8e− means 8 electrons.

Energy is used in the process, but this is not shown in the above equation.

Another important source of ammonia in the soil is decomposition. When animals and
plants die, the nitrogen compounds that were present in them are broken down and con-
verted into ammonia. This process is carried out by decomposition bacteria and fungi in
the soil.
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2. Industrial nitrogen fixation

In the Haber-Bosch process, nitrogen (N2) is converted together with hydrogen gas (H2)
into ammonia (NH3) fertiliser. This is an artificial process.

3. Lightning

In the atmosphere, lightning and photons are important in the reaction between nitrogen
(N2) and oxygen (O2) to form nitric oxide (NO) and then nitrates.

Interesting

Fact

teresting

Fact
It is interesting to note that by cultivating legumes, using the Haber-Bosch
process to manufacture chemical fertilisers and increasing pollution from vehicles
and industry, humans have more than doubled the amount of nitrogen that would
normally be changed from nitrogen gas into a biologically useful form. This has
serious environmental consequences.

8.3 Nitrification

Nitrification involves two biological oxidation reactions: firstly, the oxidation of ammonia with
oxygen to form nitrite (NO−

2 ) and secondly the oxidation of these nitrites into nitrates.

1. NH3 +O2 → NO−

2 + 3H+ + 2e− (production of nitrites)

2. NO−

2 +H2O → NO−

3 + 2H+ + 2e− (production of nitrates)

Nitrification is an important step in the nitrogen cycle in soil because it converts the ammonia
(from the nitrogen fixing part of the cycle) into nitrates, which are easily absorbed by the roots
of plants. This absorption of nitrates by plants is called assimilation. Once the nitrates have
been assimilated by the plants, they become part of the plants’ proteins. These plant proteins
are then available to be eaten by animals. In other words, animals (including humans) obtain
their own nitrogen by feeding on plants. Nitrification is performed by bacteria in the soil, called
nitrifying bacteria.

Activity :: Case Study : Nitrates in drinking water
Read the information below and then carry out your own research to help you

answer the questions that follow.
The negatively charged nitrate ion is not held onto soil particles and so can

be easily washed out of the soil. This is called leaching. In this way, valuable
nitrogen can be lost from the soil, reducing the soil’s fertility. The nitrates can
then accumulate in groundwater, and eventually in drinking water. There are strict
regulations that control how much nitrate can be present in drinking water, because
nitrates can be reduced to highly reactive nitrites by microorganisms in the gut.
Nitrites are absorbed from the gut and bind to haemoglobin (the pigment in blood
that helps to transport oxygen around the body). This reduces the ability of the
haemoglobin to carry oxygen. In young babies this can lead to respiratory distress,
a condition known as ”blue baby syndrome”.

1. How is nitrate concentration in water measured?
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2. What concentration of nitrates in drinking water is considered acceptable? You
can use drinking water standards for any part of the world, if you can’t find any
for South Africa.

3. What is ’blue baby syndrome’ and what are the symptoms of the disease?

8.4 Denitrification

Denitrification is the process of reducing nitrate and nitrite into gaseous nitrogen. The process
is carried out by denitrification bacteria. The nitrogen that is produced is returned to the atmo-
sphere to complete the nitrogen cycle.

The equation for the reaction is:

2NO−

3 + 10e− + 12H+ → N2 + 6H2O

8.5 Human Influences on the Nitrogen Cycle

Humans have contributed significantly to the nitrogen cycle in a number of ways.

• Both artificial fertilisation and the planting of nitrogen fixing crops, increase the amount
of nitrogen in the soil. In some ways this has positive effects because it increases the fertility
of the soil, and means that agricultural productivity is high. On the other hand, however,
if there is too much nitrogen in the soil, it can run off into nearby water courses such as
rivers, or can become part of the groundwater supply as we mentioned earlier. Increased
nitrogen in rivers and dams can lead to a problem called eutrophication. Eutrophication
is the contamination of a water system with excess nurtrients, which stimulates excessive
algae growth at the expense of other parts of the ecosystem. This occurs as eutrophication
reduces oxygen levels in the water. Sometimes this can cause certain plant species to be
favoured over the others and one species may ’take over’ the ecosystem, resulting in a
decrease in plant diversity. This is called a ’bloom’. Eutrophication also affects water
quality. When the plants die and decompose, large amounts of oxygen are used up and
this can cause other animals in the water to die.

Activity :: Case Study : Fertiliser use in South Africa
Refer to the data table below, which shows the average fertiliser use (in

kilograms per hectare or kg/ha) over a number of years for South Africa and
the world. Then answer the questions that follow:

1965 1970 1975 1980 1985 1990 1995 2000 2002
SA 27.9 42.2 57.7 80.3 66.6 54.9 48.5 47.1 61.4
World 34.0 48.9 63.9 80.6 86.7 90.9 84.9 88.2 91.9

1. On the same set of axes, draw two line graphs to show how fertiliser use
has changed in SA and the world between 1965 and 2002.

2. Describe the trend you see for...

(a) the world

(b) South Africa

3. Suggest a reason why the world’s fertiliser use has changed in this way over
time.

4. Do you see the same pattern for South Africa?
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5. Try to suggest a reason for the differences you see in the fertiliser use data
for South Africa.

6. One of the problems with increased fertiliser use is that there is a greater
chance of nutrient runoff into rivers and dams, and therefore a greater
danger of eutrophication. In groups of 5-6, discuss the following questions:

(a) What could farmers do to try to reduce the risk of nutrient runoff from
fields into water systems? Try to think of at least 3 different strategies
that they could use.

(b) Imagine you are going to give a presentation on eutrophication to a
group of farmers who know nothing about it. How will you educate
them about the dangers? How will you convince them that it is in their
interests to change their farming practices? Present your ideas to the
class.

• Atmospheric pollution is another problem. The main culprits are nitrous oxide (N2O),
nitric oxide (NO) and nitrogen dioxide (NO2). Most of these gases result either from emis-
sions from agricultural soils (and particularly artificial fertilisers), or from the combustion
of fossil fuels in industry or motor vehicles. The combustion (burning) of nitrogen-bearing
fuels such as coal and oil releases this nitrogen as NO2 or NO gases. Both NO2 and NO
can combine with water droplets in the atmosphere to form acid rain. Furthermore, both
NO and NO2 contribute to the depletion of the ozone layer and some are greenhouse
gases. In high concentrations these gases can contribute towards global warming.

8.6 The industrial fixation of nitrogen

A number of industrial processes are able to fix nitrogen into different compounds and then
convert these compounds into fertilisers. In the descriptions below, you will see how atmospheric
nitrogen is fixed to produce ammonia, how ammonia is then reacted with oxygen to form nitric
acid and how nitric acid and ammonia are then used to produce the fertiliser, ammonium nitrate.

• Preparation of ammonia (NH3)

The industrial preparation of ammonia is known as the Haber-Bosch process. At a high
pressure and a temperature of approximately 5000C, and in the presence of a suitable
catalyst (usually iron), nitrogen and hydrogen react according to the following equation:

N2 + 3H2 → 2NH3

Ammonia is used in the preparation of artficial fertilisers such as (NH4)2SO4 and is also
used in cleaning agents and cooling installations.

Interesting

Fact

teresting

Fact
Fritz Haber and Carl Bosch were the two men responsible for developing
the Haber-Bosch process. In 1918, Haber was awarded the Nobel Prize in
Chemistry for his work. The Haber-Bosch process was a milestone in indus-
trial chemistry because it meant that nitrogenous fertilisers were cheaper
and much more easily available. At the time, this was very important in
providing food for the growing human population.

Haber also played a major role in the development of chemical warfare in
World War I. Part of this work included the development of gas masks with
absorbent filters. He also led the teams that developed chlorine gas and
other deadly gases for use in trench warfare. His wife, Clara Immerwahr,
also a chemist, opposed his work on poison gas and committed suicide with
his service weapon in their garden. During the 1920s, scientists working at
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his institute also developed the cyanide gas formulation Zyklon B, which
was used as an insecticide and also later, after he left the programme, in the
Nazi extermination camps.

Haber was Jewish by birth, but converted from Judaism in order to be more
accepted in Germany. Despite this, he was forced to leave the country in
1933 because he was Jewish ’by definition’ (his mother was Jewish). He died
in 1934 at the age of 65. Many members of his extended family died in the
Nazi concentration camps, possibly gassed by Zyklon B.

• Preparation of nitric acid (HNO3)

Nitric acid is used to prepare fertilisers and explosives. The industrial preparation of nitric
acid is known as the Ostwald process. The Ostwald process involves the conversion of
ammonia into nitric acid in various stages:

Firstly, ammonia is heated with oxygen in the presence of a platinum catalyst to form nitric
oxide and water.

4NH3(g) + 5O2(g) → 4NO(g) + 6H2O(g)

Secondly, nitric oxide reacts with oxygen to form nitrogen dioxide. This gas is then readily
absorbed by the water to produce nitric acid. A portion of nitrogen dioxide is reduced back
to nitric oxide.

2NO(g) +O2(g) → 2NO2(g)
3NO2(g) +H2O(l) → 2HNO3(aq) +NO(g)

The NO is recycled, and the acid is concentrated to the required strength by a process
called distillation.

• Preparation of ammonium nitrate

Ammonium nitrate is used as a fertiliser, as an explosive and also in the preparation of
’laughing gas’ which is used as an anaesthetic. Ammonium nitrate is prepared by reacting
ammonia with nitric acid:

NH3 +HNO3 → NH4NO3

Activity :: Debate : Fertiliser use
Divide the class into two groups to debate the following topic:

Increasing the use of artificial fertilisers is the best solution to meet the growing
food needs of the world’s human population.

One group should take the position of agreeing with the statement, and the other
should disagree. In your groups, discuss reasons why you have the opinion that you
do, and record some notes of your discussion. Your teacher will then explain to you
how to proceed with the debate.
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8.7 Summary

• Nitrogen is essential for life on earth, since it forms part of amino acids, proteins and
nucleic acids.

• The atmosphere is composed mostly of nitrogen gas, but the gas is inert, meaning that
it is not available to living organisms in its gaseous form.

• The nitrogen cycle describes how nitrogen and nitrogen-containing compounds are changed
into different forms in nature.

• The nitrogen cycle consists of three major processes: nitrogen fixation, nitrification and
denitrification.

• Nitrogen fixation is the conversion of atmospheric nitrogen into compounds such as
ammonia, that are more easily used.

• Nitrogen can be fixed biologically through the actions of bacteria, industrially through
the Haber-Bosch process or by lightning.

• Nitrification converts ammonia into nitrites and nitrates, which can be easily assimilated
by plants.

• Denitrification converts nitrites and nitrates back into gaseous nitrogen to complete the
nitrogen cycle.

• Humans have had a number of impacts on the nitrogen cycle. The production of artificial
fertilisers for example, means that there is a greater chance of runoff into water systems.
In some cases, eutrophication may occur.

• Eutrophication is the contamination of a water system with excess nurtrients, which
stimulates excessive algae growth at the expense of other parts of the ecosystem. This
occurs as eutrophication reduces oxygen levels in the water.

• Many nitrogen gases such as NO, N2O and NO2 are released by agricultural soils and
artificial fertilisers. These gases may combine with water vapour in the atmosphere and
result in acid rain. Some of these gases are also greenhouse gases and may contribute
towards global warming.

• A number of industrial processes are used to produce articifical fertilisers.

• The Haber-Bosch process converts atmsopheric nitrogen into ammonia.

• The Ostwald process reacts ammonia with oxygen to produce nitric acid, which is used
in the preparation of fertilisers and explosives.

• If ammonia and nitric acid react, the product is ammonium nitrate, which is used as a
fertiliser and as an explosive.

Exercise: Summary Exercise

1. Look at the diagram and the descriptions of the nitrogen cycle earlier in the
chapter:

(a) Would you describe the changes that take place in the nitrogen cycle as
chemical or physical changes? Explain your answer.

(b) Are the changes that take place in the water cycle physical or chemical
changes? Explain your answer.

2. Explain what is meant by each of the following terms:

(a) nitrogen fixing

(b) fertiliser

(c) eutrophication
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3. Explain why the fixing of atmospheric nitrogen is so important for the survival
of life on earth.

4. Refer to the diagram below and then answer the questions that follow:

N2
(1)

(2)
(3)

(4)

(5)

(a) Explain the role of decomposers in the nitrogen cycle.

(b) If the process taking place at (3) is nitrification, then label the processes
at (1) and (5).

(c) Identify the nitrogen products at (2) and (4).

(d) On the diagram, indicate the type of bacteria that are involved in each
stage of the nitrogen cycle.

(e) In industry, what process is used to produce the compound at 2?

(f) Does the diagram above show a ’cycle’? Explain your answer.

5. NO and NO2 are both nitrogen compounds:

(a) Explain how each of these compounds is formed?

(b) What effect does each of these compounds have in the environment?

6. There are a number of arguments both ’for’ and ’against’ the use of artificial
fertilisers. Draw a table to summarise the advantages and disadvantages of
their use.
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Chapter 9

The Hydrosphere - Grade 10

9.1 Introduction

As far as we know, the Earth we live on is the only planet that is able to support life. Among
other things, Earth is just the right distance from the sun to have temperatures that are suitable
for life to exist. Also, the Earth’s atmosphere has exactly the right type of gases in the right
amounts for life to survive. Our planet also has water on its surface, which is something very
unique. In fact, Earth is often called the ’Blue Planet’ because most of it is covered in water.
This water is made up of freshwater in rivers and lakes, the saltwater of the oceans and estuaries,
groundwater and water vapour. Together, all these water bodies are called the hydrosphere.

9.2 Interactions of the hydrosphere

It is important to realise that the hydrosphere interacts with other global systems, including the
atmosphere, lithosphere and biosphere.

• Atmosphere

When water is heated (e.g. by energy from the sun), it evaporates and forms water vapour.
When water vapour cools again, it condenses to form liquid water which eventually returns
to the surface by precipitation e.g. rain or snow. This cycle of water moving through the
atmosphere, and the energy changes that accompany it, is what drives weather patterns
on earth.

• Lithosphere

In the lithosphere (the ocean and continental crust at the Earth’s surface), water is an
important weathering agent, which means that it helps to break rock down into rock
fragments and then soil. These fragments may then be transported by water to another
place, where they are deposited. This is called erosion. These two process i.e. weathering
and erosion, help to shape the earth’s surface. You can see this for example in rivers.
In the upper streams, rocks are eroded and sediments are transported down the river and
deposited on the wide flood plains lower down. On a bigger scale, river valleys in mountains
have been carved out by the action of water, and cliffs and caves on rocky beach coastlines,
are also the result of weathering and erosion by water.

• Biosphere

In the biosphere, land plants absorb water through their roots and then transport this
through their vascular (transport) system to stems and leaves. This water is needed in
photosynthesis, the food production process in plants. Transpiration (evaporation of water
from the leaf surface) then returns water back to the atmosphere.
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9.3 Exploring the Hydrosphere

The large amount of water on our planet is something quite unique. In fact, about 71% of
the earth is covered by water. Of this, almost 97% is found in the oceans as saltwater, about
2.2% occurs as a solid in ice sheets, while the remaining amount (less than 1%) is available as
freshwater. So from a human perspective, despite the vast amount of water on the planet, only a
very small amount is actually available for human consumption (e.g. drinking water). Before we
go on to look more closely at the chemistry of the hydrosphere, we are going to spend some time
exploring a part of the hydrosphere, in order to start appreciating what a complex and beautiful
part of the world it is.

Activity :: Investigation : Investigating the hydrosphere

1. Choosing a study site:
For this exercise, you can choose any part of the hydrosphere that you would
like to explore. This may be a rock pool, a lake, river, wetland or even just a
small pond. The guidelines below will apply best to a river investigation, but
you can ask similar questions and gather similar data in other areas. When
choosing your study site, consider how accessible it is (how easy is it to get
to?) and the problems you may experience (e.g. tides, rain).

2. Collecting data:
Your teacher will provide you with the equipment you need to collect the fol-
lowing data. You should have at least one study site where you will collect
data, but you might decide to have more if you want to compare your results
in different areas. This works best in a river, where you can choose sites down
its length.

(a) Chemical data
Measure and record data such as temperature, pH, conductivity and dis-
solved oxygen at each of your sites. You may not know exactly what
these measurements mean right now, but it will become clearer later in the
chapter.

(b) Hydrological data
Measure the water velocity of the river and observe how the volume of water
in the river changes as you move down its length. You can also collect a
water sample in a clear bottle, hold it to the light and see whether the
water is clear or whether it has particles in it.

(c) Biological data
What types of animals and plants are found in or near this part of the
hydrosphere? Are they specially adapted to their environment?

Record your data in a table like the one shown below:

Site 1 Site 2 Site 3
Temperature
pH
Conductivity
Dissolved oxygen
Animals and plants

3. Interpreting the data:
Once you have collected and recorded your data, think about the following
questions:

• How does the data you have collected vary at different sites?

• Can you explain these differences?

• What effect do you think temperature, dissolved oxygen and pH have on
animals and plants that are living in the hydrosphere?
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• Water is seldom ’pure’. It usually has lots of things dissolved (e.g. Mg,
Ca and NO−

3 ions) or suspended (e.g. soil particles, debris) in it. Where
do these substances come from?

• Are there any human activities near this part of the hydrosphere? What
effect could these activities have on the hydrosphere?

9.4 The Importance of the Hydrosphere

It is so easy sometimes to take our hydrosphere for granted, and we seldom take the time to
really think about the role that this part of the planet plays in keeping us alive. Below are just
some of the very important functions of water in the hydrosphere:

• Water is a part of living cells

Each cell in a living organism is made up of almost 75% water, and this allows the cell
to function normally. In fact, most of the chemical reactions that occur in life, involve
substances that are dissolved in water. Without water, cells would not be able to carry
out their normal functions, and life could not exist.

• Water provides a habitat

The hydrosphere provides an important place for many animals and plants to live. Many
gases (e.g. CO2, O2), nutrients e.g. nitrate (NO

−

3 ), nitrite (NO
−

2 ) and ammonium (NH+
4 )

ions, as well as other ions (e.g. Ca2+ and Mg2+) are dissolved in water. The presence of
these substances is critical for life to exist in water.

• Regulating climate

One of water’s unique characteristics is its high specific heat. This means that water takes
a long time to heat up, and also a long time to cool down. This is important in helping
to regulate temperatures on earth so that they stay within a range that is acceptable for
life to exist. Ocean currents also help to disperse heat.

• Human needs

Humans use water in a number of ways. Drinking water is obviously very important, but
water is also used domestically (e.g. washing and cleaning) and in industry. Water can
also be used to generate electricity through hydropower.

These are just a few of the very important functions that water plays on our planet. Many of the
functions of water relate to its chemistry and to the way in which it is able to dissolve substances
in it.

9.5 Ions in aqueous solution

As we mentioned earlier, water is seldom pure. Because of the structure of the water molecule, it
is able to dissolve substances in it. This is very important because if water wasn’t able to do this,
life would not be able to survive. In rivers and the oceans for example, dissolved oxygen means
that organisms (such as fish) are still able to respire (breathe). For plants, dissolved nutrients
are also available. In the human body, water is able to carry dissolved substances from one part
of the body to another.

Many of the substances that dissolve are ionic, and when they dissolve they form ions in solution.
We are going to look at how water is able to dissolve ionic compounds, and how these ions
maintain a balance in the human body, how they affect water hardness, and how specific ions
determine the pH of solutions.
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9.5.1 Dissociation in water

Water is a polar molecule (figure 9.1). This means that one part of the molecule has a slightly
positive charge and the other part has a slightly negative charge.

δ+ δ−H2O

Figure 9.1: Water is a polar molecule

It is the polar nature of water that allows ionic compounds to dissolve in it. In the case of
sodium chloride (NaCl) for example, the positive sodium ions (Na+) will be attracted to the
negative pole of the water molecule, while the negative chloride ions (Cl−) will be attracted to
the positive pole of the water molecule. In the process, the ionic bonds between the sodium
and chloride ions are weakened and the water molecules are able to work their way between the
individual ions, surrounding them and slowly dissolving the compound. This process is called
dissociation. A simplified representation of this is shown in figure 9.2.

Definition: Dissociation
Dissociation in chemistry and biochemistry is a general process in which ionic compounds
separate or split into smaller molecules or ions, usually in a reversible manner.

Na+ Cl−Cl−

Cl−

Cl−

H2OH2O

H2O

H2O

δ−δ−

δ−

δ−

δ+δ+

δ+

δ+

Figure 9.2: Sodium chloride dissolves in water

The dissolution of sodium chloride can be represented by the following equation:

NaCl(s) → Na+(aq) + Cl−(aq)

The symbols s (solid), l (liquid), g (gas) and aq (material is dissolved in water) are written after
the chemical formula to show the state or phase of the material. The dissolution of potassium
sulfate into potassium and sulfate ions is shown below as another example:
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K2SO4(s) → 2K+(aq) + SO2−
4 (aq)

Remember that molecular substances (e.g. covalent compounds) may also dissolve, but most
will not form ions. One example is sugar.

C6H12O6(s) ⇋ C6H12O6(aq)

There are exceptions to this and some molecular substances will form ions when they dissolve.
Hydrogen chloride for example can ionise to form hydrogen and chloride ions.

HCl(g) → H+(aq) + Cl−(aq)

Interesting

Fact

teresting

Fact
The ability of ionic compounds to dissolve in water is extremely important in
the human body! The body is made up of cells, each of which is surrounded
by a membrane. Dissolved ions are found inside and outside of body cells, in
different concentrations. Some of these ions are positive (e.g. Mg2+) and some
are negative (e.g. Cl−). If there is a difference in the charge that is inside and
outside the cell, then there is a potential difference across the cell membrane.
This is called the membrane potential of the cell. The membrane potential
acts like a battery and affects the movement of all charged substances across the
membrane. Membrane potentials play a role in muscle functioning, digestion,
excretion and in maintaining blood pH, to name just a few. The movement of
ions across the membrane can also be converted into an electric signal that can
be transferred along neurons (nerve cells), which control body processes. If ionic
substances were not able to dissociate in water, then none of these processes
would be possible! It is also important to realise that our bodies can lose ions
such as Na+, K+, Ca2+, Mg2+, and Cl−, for example when we sweat during
exercise. Sports drinks such as Lucozade and Powerade are designed to replace
these lost ions so that the body’s normal functioning is not affected.

Exercise: Ions in solution

1. For each of the following, say whether the substance is ionic or molecular.

(a) potassium nitrate (KNO3)

(b) ethanol (C2H5OH)

(c) sucrose (a type of sugar) (C12H22O11

(d) sodium bromide (NaBr)

2. Write a balanced equation to show how each of the following ionic compounds
dissociate in water.

(a) sodium sulphate (Na2SO4)

(b) potassium bromide (KBr)

(c) potassium permanganate (KMNO4)

(d) sodium phosphate (Na3PO4)
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9.5.2 Ions and water hardness

Definition: Water hardness
Water hardness is a measure of the mineral content of water. Minerals are substances such
as calcite, quartz and mica that occur naturally as a result of geological processes.

Hard water is water that has a high mineral content. Water that has a low mineral content
is known as soft water. If water has a high mineral content, it usually contains high levels of
metal ions, mainly calcium (Ca) and magnesium (Mg). The calcium enters the water from either
CaCO3 (limestone or chalk) or from mineral deposits of CaSO4. The main source of magnesium
is a sedimentary rock called dolomite, CaMg(CO3)2. Hard water may also contain other metals
as well as bicarbonates and sulphates.

Interesting

Fact

teresting

Fact
The simplest way to check whether water is hard or soft is to use the lather/froth
test. If the water is very soft, soap will lather more easily when it is rubbed
against the skin. With hard water this won’t happen. Toothpaste will also not
froth well in hard water.

A water softener works on the principle of ion exchange. Hard water passes through a media
bed, usually made of resin beads that are supersaturated with sodium. As the water passes
through the beads, the hardness minerals (e.g. calcium and magnesium) attach themselves to
the beads. The sodium that was originally on the beads is released into the water. When the
resin becomes saturated with calcium and magnesium, it must be recharged. A salt solution is
passed through the resin. The sodium replaces the calcium and magnesium, and these ions are
released into the waste water and discharged.

9.5.3 The pH scale

The concentration of specific ions in solution, affects whether the solution is acidic or basic. You
will learn about acids and bases in Grade 11. Acids and bases can be described as substances that
either increase or decrease the concentration of hydrogen (H+ or H3O

+) ions in a solution. An
acid increases the hydrogen ion concentration in a solution, while a base decreases the hydrogen
ion concentration. pH is used to measure whether a substance is acidic or basic (alkaline).

Definition: pH
pH is a measure of the acidity or alkalinity of a solution. The pH scale ranges from 0 to 14.
Solutions with a pH less than seven are acidic, while those with a pH greater than seven
are basic (alkaline). pH 7 is considered neutral.

pH can be calculated using the following equation:

pH = −log[H+]

or

pH = −log[H3O
+]

The brackets in the above equation are used to show concentration in mol.dm−3.
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Worked Example 15: pH calculations
Question: Calculate the pH of a solution where the concentration of
hydrogen ions is 1 × 10−7 mol.dm−3.

Answer
Step 1 : Determine the concentration of hydrogen ions in mol.dm−3

In this example, the concentration has been given and is 1 × 10−7 mol.dm−3

Step 2 : Substitute this value into the pH equation and calculate the
pH value
pH = -log[H+]
= -log(1 × 10−7)
= 7

Worked Example 16: pH calculations
Question: In a solution of ethanoic acid (or acetic acid), the following
equilibrium is established:

CH3COOH(aq) +H2O ⇋ CH3COO−(aq) +H3O
+

The concentration of CH3COO
− ions is found to be 0.003 mol.dm−3.

Calculate the pH of the solution.

Answer
Step 1 : Determine the concentration of hydrogen ions in the solution
According to the balanced equation for this reaction, the mole ratio of
CH3COO

− ions to H3O
+ ions is the same, therefore the concentration of

these two ions in the solution will also be the same. So, [H3O
+] = 0.003

dm−3.

Step 2 : Substitute this value into the pH equation and calculate the
pH value
pH = -log[H3O

+]
= -log(0.003)
= 2.52

Understanding pH is very important. In living organisms, it is necessary to maintain a constant
pH so that chemical reactions can occur under optimal conditions.

Important: It may also be useful for calculations involving the pH scale, to know that the
following equation can also be used:

[H3O
+][OH−] = 1 × 10−14
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Interesting

Fact

teresting

Fact
A build up of acid in the human body can be very dangerous. Lactic acidosis

is a condition caused by the buildup of lactic acid in the body. It leads to
acidification of the blood (acidosis) and can make a person very ill. Some of
the symptoms of lactic acidosis are deep and rapid breathing, vomiting, and
abdominal pain. In the fight against HIV, lactic acidosis is a problem. One of
the antiretrovirals (ARV’s) that is used in anti-HIV treatment is Stavudine (also
known as Zerit or d4T). One of the side effects of Stavudine is lactic acidosis,
particularly in overweight women. If it is not treated quickly, it can result in
death.

In agriculture, farmers need to know the pH of their soils so that they are able to plant the
right kinds of crops. The pH of soils can vary depending on a number of factors such as
rainwater, the kinds of rocks and materials from which the soil was formed and also human
influences such as pollution and fertilisers. The pH of rain water can also vary and this too has
an effect on agriculture, buildings, water courses, animals and plants. Rainwater is naturally
acidic because carbon dioxide in the atmosphere combines with water to form carbonic acid.
Unpolluted rainwater has a pH of approximately 5.6. However, human activities can alter the
acidity of rain and this can cause serious problems such as acid rain.

Exercise: Calculating pH

1. Calculate the pH of each of the following solutions:

(a) A 0.2 mol.dm−3 KOH solution

(b) A 0.5 mol.dm−3 HCl solution

2. What is the concentration (in mol.dm−3) of H3O
+ ions in a NaOH solution

which has a pH of 12?

3. The concentrations of hydronium (H3O
+) and hydroxyl (OH−) ions in a typical

sample of seawater are 10−8 mol.dm−3 and 10−6 mol.dm−3 respectively.

(a) Is the seawater acidic or basic?

(b) What is the pH of the seawater?

(c) Give a possible explanation for the pH of the seawater.

(IEB Paper 2, 2002)

9.5.4 Acid rain

The acidity of rainwater comes from the natural presence of three substances (CO2, NO, and
SO2) in the lowest layer of the atmosphere. These gases are able to dissolve in water and
therefore make rain more acidic than it would otherwise be. Of these gases, carbon dioxide
(CO2) has the highest concentration and therefore contributes the most to the natural acidity
of rainwater. We will look at each of these gases in turn.

Definition: Acid rain
Acid rain refers to the deposition of acidic components in rain, snow and dew. Acid rain
occurs when sulfur dioxide and nitrogen oxides are emitted into the atmosphere, undergo
chemical transformations, and are absorbed by water droplets in clouds. The droplets then
fall to earth as rain, snow, mist, dry dust, hail, or sleet. This increases the acidity of the
soil, and affects the chemical balance of lakes and streams.
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1. Carbon dioxide

Carbon dioxide reacts with water in the atmosphere to form carbonic acid (H2CO3).

CO2 +H2O → H2CO3

The carbonic acid dissociates to form hydrogen and hydrogen carbonate ions. It is the
presence of hydrogen ions that lowers the pH of the solution, making the rain acidic.

H2CO3 → H+ +HCO−

3

2. Nitric oxide

Nitric oxide (NO) also contributes to the natural acidity of rainwater and is formed during
lightning storms when nitrogen and oxygen react. In air, NO is oxidised to form nitrogen
dioxide (NO2). It is the nitrogen dioxide which then reacts with water in the atmosphere
to form nitric acid (HNO3).

3NO2(g) +H2O → 2HNO3(aq) +NO(g)

The nitric acid dissociates in water to produce hydrogen ions and nitrate ions. This again
lowers the pH of the solution, making it acidic.

HNO3 → H+ +NO−

3

3. Sulfur dioxide

Sulfur dioxide in the atmosphere first reacts with oxygen to form sulfur trioxide, before
reacting with water to form sulfuric acid.

2SO2 +O2 → 2SO3

SO3 +H2O → H2SO4

Sulfuric acid dissociates in a similar way to the previous reactions.

H2SO4 → HSO−

4 +H+

Although these reactions do take place naturally, human activities can greatly increase the con-
centration of these gases in the atmosphere, so that rain becomes far more acidic than it would
otherwise be. The burning of fossil fuels in industries, vehicles etc is one of the biggest culprits.
If the acidity of the rain drops below 5, it is referred to as acid rain.

Acid rain can have a very damaging effect on the environment. In rivers, dams and lakes, in-
creased acidity can mean that some species of animals and plants will not survive. Acid rain can
also degrade soil minerals, producing metal ions that are washed into water systems. Some of
these ions may be toxic e.g. Al3+. From an economic perspective, altered soil pH can drastically
affect agricultural productivity.

Acid rain can also affect buildings and monuments, many of which are made from marble and
limestone. A chemical reaction takes place between CaCO3 (limestone) and sulfuric acid to
produce aqueous ions which can be easily washed away. The same reaction can occur in the
lithosphere where limestone rocks are present e.g. limestone caves can be eroded by acidic
rainwater.

H2SO4 + CaCO3 → CaSO4.H2O + CO2
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Activity :: Investigation : Acid rain
You are going to test the effect of ’acid rain’ on a number of substances.
Materials needed:
samples of chalk, marble, zinc, iron, lead, dilute sulfuric acid, test tubes, beaker,

glass dropper
Method:

1. Place a small sample of each of the following substances in a separate test
tube: chalk, marble, zinc, iron and lead

2. To each test tube, add a few drops of dilute sulfuric acid.

3. Observe what happens and record your results.

Discussion questions:

• In which of the test tubes did reactions take place? What happened to the
sample substances?

• What do your results tell you about the effect that acid rain could have on each
of the following: buildings, soils, rocks and geology, water ecosystems?

• What precautions could be taken to reduce the potential impact of acid rain?

9.6 Electrolytes, ionisation and conductivity

Conductivity in aqueous solutions, is a measure of the ability of water to conduct an electric
current. The more ions there are in the solution, the higher its conductivity.

Definition: Conductivity
Conductivity is a measure of a solution’s ability to conduct an electric current.

9.6.1 Electrolytes

An electrolyte is a material that increases the conductivity of water when dissolved in it.
Electrolytes can be further divided into strong electrolytes and weak electrolytes.

Definition: Electrolyte
An electrolyte is a substance that contains free ions and behaves as an electrically conductive
medium. Because they generally consist of ions in solution, electrolytes are also known as
ionic solutions.

1. Strong electrolytes

A strong electrolyte is a material that ionises completely when it is dissolved in water:

AB(s,l,g) → A+(aq) +B−(aq)

This is a chemical change because the original compound has been split into its com-
ponent ions and bonds have been broken. In a strong electrolyte, we say that the extent
of ionisation is high. In other words, the original material dissociates completely so that
there is a high concentration of ions in the solution. An example is a solution of potassium
nitrate:

KNO3(s) → K+(aq) +NO−

3 (aq)
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2. Weak electrolytes

A weak electrolyte is a material that goes into solution and will be surrounded by water
molecules when it is added to water. However, not all of the molecules will dissociate into
ions. The extent of ionisation of a weak electrolyte is low and therefore the concentration
of ions in the solution is also low.

AB(s,l,g) → AB(aq) ⇋ A+(aq) +B−(aq)

The following example shows that, in the final solution of a weak electrolyte, some of the
original compound plus some dissolved ions are present.

C2H3O2H(l) → C2H3O2H ⇋ C2H3O
−

2 (aq) +H+(aq)

9.6.2 Non-electrolytes

A non-electrolyte is a material that does not increase the conductivity of water when dissolved
in it. The substance goes into solution and becomes surrounded by water molecules, so that the
molecules of the chemical become separated from each other. However, although the substance
does dissolve, it is not changed in any way and no chemical bonds are broken. The change is a
physical change. In the oxygen example below, the reaction is shown to be reversible because
oxygen is only partially soluble in water and comes out of solution very easily.

C2H5OH(l) → C2H5OH(aq)

O2(g) ⇋ O2(aq)

9.6.3 Factors that affect the conductivity of water

The conductivity of water is therefore affected by the following factors:

• The type of substance that dissolves in water

Whether a material is a strong electrolyte (e.g. potassium nitrate, KNO3), a weak elec-
trolyte (e.g. acetate, C2H3O2H) or a non-electrolyte (e.g. sugar, alcohol, oil) will affect
the conductivity of water because the concentration of ions in solution will be different in
each case.

• The concentration of ions in solution

The higher the concentration of ions in solution, the higher its conductivity will be.

• Temperature

The warmer the solution the higher the solubility of the material being dissolved, and
therefore the higher the conductivity as well.

Activity :: Experiment : Electrical conductivity
Aim:

To investigate the electrical conductivities of different substances and solutions.
Apparatus:

solid salt (NaCl) crystals; different liquids such as distilled water, tap water,
seawater, benzene and alcohol; solutions of salts e.g. NaCl, KBr; a solution of
an acid (e.g. HCl) and a solution of a base (e.g. NaOH); torch cells; ammeter;
conducting wire, crocodile clips and 2 carbon rods.
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Method:

Set up the experiment by connecting the circuit as shown in the diagram below.
In the diagram, ’X’ represents the substance or solution that you will be testing.
When you are using the solid crystals, the crocodile clips can be attached directly to
each end of the crystal. When you are using solutions, two carbon rods are placed
into the liquid, and the clips are attached to each of the rods. In each case, complete
the circuit and allow the current to flow for about 30 seconds. Observe whether the
ammeter shows a reading.

battery

test substance

X
crocodile clip

AAmmeter

Results:

Record your observations in a table similar to the one below:

Test substance Ammeter reading

What do you notice? Can you explain these observations?
Remember that for electricity to flow, there needs to be a movement of charged

particles e.g. ions. With the solid NaCl crystals, there was no flow of electricity
recorded on the ammeter. Although the solid is made up of ions, they are held
together very tightly within the crystal lattice, and therefore no current will flow.
Distilled water, benzene and alcohol also don’t conduct a current because they are
covalent compounds and therefore do not contain ions.

The ammeter should have recorded a current when the salt solutions and the acid
and base solutions were connected in the circuit. In solution, salts dissociate into
their ions, so that these are free to move in the solution. Acids and bases behave
in a similar way, and dissociate to form hydronium and oxonium ions. Look at the
following examples:

KBr → K+ + Br−

NaCl → Na+ +Cl−

HCl + H2O → H3O
+ +Cl−

NaOH → Na+ +OH−

Conclusions:

Solutions that contain free-moving ions are able to conduct electricity because of
the movement of charged particles. Solutions that do not contain free-moving ions
do not conduct electricity.
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Interesting

Fact

teresting

Fact
Conductivity in streams and rivers is affected by the geology of the area where
the water is flowing through. Streams that run through areas with granite
bedrock tend to have lower conductivity because granite is made of materials
that do not ionise when washed into the water. On the other hand, streams
that run through areas with clay soils tend to have higher conductivity because
the materials ionise when they are washed into the water. Pollution can also af-
fect conductivity. A failing sewage system or an inflow of fertiliser runoff would
raise the conductivity because of the presence of chloride, phosphate, and nitrate
(ions) while an oil spill (non-ionic) would lower the conductivity. It is very im-
portant that conductivity is kept within a certain acceptable range so that the
organisms living in these water systems are able to survive.

9.7 Precipitation reactions

Sometimes, ions in solution may react with each other to form a new substance that is insoluble.
This is called a precipitate.

Definition: Precipitate
A precipitate is the solid that forms in a solution during a chemical reaction.

Activity :: Demonstration : The reaction of ions in solution
Apparatus and materials:
4 test tubes; copper(II) chloride solution; sodium carbonate solution; sodium

sulphate solution

CuCl2CuCl2 Na2CO3 Na2SO4

Method:

1. Prepare 2 test tubes with approximately 5 ml of dilute Cu(II)chloride solution
in each

2. Prepare 1 test tube with 5 ml sodium carbonate solution

3. Prepare 1 test tube with 5 ml sodium sulphate solution

4. Carefully pour the sodium carbonate solution into one of the test tubes con-
taining copper(II) chloride and observe what happens

5. Carefully pour the sodium sulphate solution into the second test tube containing
copper(II) chloride and observe what happens

Results:
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1. A light blue precipitate forms when sodium carbonate reacts with copper(II)
chloride

2. No precipitate forms when sodium sulphate reacts with copper(II) chloride

It is important to understand what happened in the previous demonstration. We will look at
what happens in each reaction, step by step.

1. Reaction 1: Sodium carbonate reacts with copper(II) chloride

When these compounds react, a number of ions are present in solution: Cu2+, Cl−, Na+

and CO2−
3 .

Because there are lots of ions in solution, they will collide with each other and may recom-
bine in different ways. The product that forms may be insoluble, in which case a precipitate
will form, or the product will be soluble, in which case the ions will go back into solution.
Let’s see how the ions in this example could have combined with each other:

Cu2+ +CO2−
3 → CuCO3

Cu2+ + 2Cl− → CuCl2

Na+ +Cl− → NaCl

Na+ +CO2−
3 → Na2CO3

You can automatically exclude the reactions where sodium carbonate and copper(II) chlo-
ride are the products because these were the initial reactants. You also know that sodium
chloride (NaCl) is soluble in water, so the remaining product (copper carbonate) must be
the one that is insoluble. It is also possible to look up which salts are soluble and which
are insoluble. If you do this, you will find that most carbonates are insoluble, therefore the
precipitate that forms in this reaction must be CuCO3. The reaction that has taken place
between the ions in solution is as follows:

2Na+ + CO2−
3 + Cu2+ + 2Cl− → CuCO3 + 2Na+ + 2Cl−

2. Reaction 2: Sodium sulphate reacts with copper(II) chloride

The ions that are present in solution are Cu2+, Cl−, Na+ and SO2−
4 .

The ions collide with each other and may recombine in different ways. The possible com-
binations of the ions are as follows:

Cu2+ + SO2−
4 → CuSO4

Cu2+ + 2Cl− → CuCl2

Na+ +Cl− → NaCl

Na+ + SO2−
4 → Na2SO4

If we look up which of these salts are soluble and which are insoluble, we see that most
chlorides and most sulphates are soluble. This is why no precipitate forms in this second
reaction. Even when the ions recombine, they immediately separate and go back into
solution. The reaction that has taken place between the ions in solution is as follows:

2Na+ + SO2−
4 + Cu2+ + 2Cl− → 2Na+ + SO2−

4 + Cu2+ + 2Cl−

Table 9.1 shows some of the general rules about the solubility of different salts based on a
number of investigations:
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Table 9.1: General rules for the solubility of salts

Salt Solubility
Nitrates All are soluble
Potassium, sodium and ammo-
nium salts

All are soluble

Chlorides All are soluble except silver chlo-
ride, lead(II)chloride and mer-
cury(II)chloride

Sulphates All are soluble except
lead(II)sulphate, barium sul-
phate and calcium sulphate

Carbonates All are insoluble except those of
potassium, sodium and ammo-
nium

9.8 Testing for common anions in solution

It is also possible to carry out tests to determine which ions are present in a solution.

9.8.1 Test for a chloride

Prepare a solution of the unknown salt using distilled water and add a small amount of silver
nitrate solution. If a white precipitate forms, the salt is either a chloride or a carbonate.

Cl− +Ag+ +NO−

3 → AgCl + NO−

3 (AgCl is white precipitate)

CO2−
3 + 2Ag+ + 2NO−

3 → Ag2CO3 + 2NO2 (Ag2CO3 is white precipitate)

The next step is to treat the precipitate with a small amount of concentrated nitric acid. If
the precipitate remains unchanged, then the salt is a chloride. If carbon dioxide is formed, and
the precipitate disappears, the salt is a carbonate.

AgCl + HNO3 → (no reaction; precipitate is unchanged)

Ag2CO3 + 2HNO3 → 2AgNO3 +H2O+CO2 (precipitate disappears)

9.8.2 Test for a sulphate

Add a small amount of barium chloride solution to a solution of the test salt. If a white precipitate
forms, the salt is either a sulphate or a carbonate.

SO2−
4 + Ba2+ +Cl− → BaSO4 +Cl− (BaSO4 is a white precipitate)

CO2−
3 + Ba2+ +Cl− → BaCO3 +Cl− (BaCO3 is a white precipitate)

If the precipitate is treated with nitric acid, it is possible to distinguish whether the salt is a
sulphate or a carbonate (as in the test for a chloride).

BaSO4 +HNO3 → (no reaction; precipitate is unchanged)

BaCO3 + 2HNO3 → Ba(NO3)2 +H2O+CO2 (precipitate disappears)
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9.8.3 Test for a carbonate

If a sample of the dry salt is treated with a small amount of acid, the production of carbon
dioxide is a positive test for a carbonate.

Acid + CO2−
3 → CO2

If the gas is passed through limewater and the solution becomes milky, the gas is carbon dioxide.

Ca(OH)2 + CO2 → CaCO3 +H2O (It is the insoluble CaCO3 precipitate that makes the
limewater go milky)

9.8.4 Test for bromides and iodides

As was the case with the chlorides, the bromides and iodides also form precipitates when they
are reacted with silver nitrate. Silver chloride is a white precipitate, but the silver bromide and
silver iodide precipitates are both pale yellow. To determine whether the precipitate is a bromide
or an iodide, we use chlorine water and carbon tetrachloride (CCl4).

Chlorine water frees bromine gas from the bromide, and colours the carbon tetrachloride a red-
dish brown.

Chlorine water frees iodine gas from an iodide, and colours the carbon tetrachloride is coloured
purple.

Exercise: Precipitation reactions and ions in solution

1. Silver nitrate (AgNO3) reacts with potassium chloride (KCl) and a white pre-
cipitate is formed.

(a) Write a balanced equation for the reaction that takes place.

(b) What is the name of the insoluble salt that forms?

(c) Which of the salts in this reaction are soluble?

2. Barium chloride reacts with sulfuric acid to produce barium sulphate and hy-
drochloric acid.

(a) Write a balanced equation for the reaction that takes place.

(b) Does a precipitate form during the reaction?

(c) Describe a test that could be used to test for the presence of barium
sulphate in the products.

3. A test tube contains a clear, colourless salt solution. A few drops of silver
nitrate solution are added to the solution and a pale yellow precipitate forms.
Which one of the following salts was dissolved in the original solution?

(a) NaI

(b) KCl

(c) K2CO3

(d) Na2SO4

(IEB Paper 2, 2005)
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9.9 Threats to the Hydrosphere

It should be clear by now that the hydrosphere plays an extremely important role in the survival of
life on Earth, and that the unique properties of water allow various important chemical processes
to take place which would otherwise not be possible. Unfortunately for us however, there are
a number of factors that threaten our hydrosphere, and most of these threats are because of
human activities. We are going to focus on two of these issues: overuse and pollution and look
at ways in which these problems can possibly be overcome.

1. Overuse of water

We mentioned earlier that only a very small percentage of the hydrosphere’s water is
available as freshwater. However, despite this, humans continue to use more and more
water to the point where water consumption is fast approaching the amount of water
that is available. The situation is a serious one, particularly in countries such as South
Africa which are naturally dry, and where water resources are limited. It is estimated that
between 2020 and 2040, water supplies in South Africa will no longer be able to meet the
growing demand for water in this country. This is partly due to population growth, but
also because of the increasing needs of industries as they expand and develop. For each
of us, this should be a very scary thought. Try to imagine a day without water...difficult
isn’t it? Water is so much a part of our lives, that we are hardly aware of the huge part
that it plays in our daily lives.

Activity :: Discussion : Creative water conservation
As populations grow, so do the demands that are placed on dwindling water

resources. While many people argue that building dams helps to solve this water-
shortage problem, the reality is that dams are only a temporary solution, and
that they often end up doing far more ecological damage than good. The only
sustainable solution is to reduce the demand for water, so that water supplies
are sufficient to meet this. The more important question then is how to do this.

Discussion:
Divide the class into groups, so that there are about five people in each.

Each group is going to represent a different sector within society. Your teacher
will tell you which sector you belong to from the following: Farming, industry,
city management or civil society (i.e. you will represent the ordinary ’man on
the street’). In your groups, discuss the following questions as they relate to the
group of people you represent: (Remember to take notes during your discussions,
and nominate a spokesperson to give feedback to the rest of the class on behalf
of your group)

• What steps could be taken by your group to conserve water?

• Why do you think these steps are not being taken?

• What incentives do you think could be introduced to encourage this group
to conserve water more efficiently?

2. Pollution

Pollution of the hydrosphere is also a major problem. When we think of pollution, we
sometimes only think of things like plastic, bottles, oil and so on. But any chemical that
is present in the hydrosphere in an amount that is not what it should be is a pollutant.
Animals and plants that live in the hydrosphere are specially adapted to surviving within a
certain range of conditions. If these conditions are changed (e.g. through pollution), these
organisms may not be able to survive. Pollution then, can affect entire aquatic ecosystems.
The most common forms of pollution in the hydrosphere are waste products from humans
and from industries, nutrient pollution e.g. fertiliser runoff which causes eutrophication
(this was discussed in chapter ref 7) and toxic trace elements such as aluminium, mercury
and copper to name a few. Most of these elements come from mines or from industries.
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It is important to realise that our hydrosphere exists in a delicate balance with other systems,
and that disturbing this balance can have serious consequences for life on this planet.

Activity :: Group Project : School Action Project
There is a lot that can be done within a school to save water. As a class,

discuss what actions could be taken by your class to make people more aware of how
important it is to conserve water.

9.10 Summary

• The hydrosphere includes all the water that is on Earth. Sources of water include fresh-
water (e.g. rivers, lakes), saltwater (e.g. oceans), groundwater (e.g. boreholes) and water
vapour. Ice (e.g. glaciers) is also part of the hydrosphere.

• The hydrosphere interacts with other global systems, including the atmosphere, litho-
sphere and biosphere.

• The hydrosphere has a number of important functions. Water is a part of all living cells,
it provides a habitat for many living organisms, it helps to regulate climate, and it is used
by humans for domestic, industrial and other use.

• The polar nature of water means that ionic compounds dissociate easily in aqueous
solution into their component ions.

• Ions in solution play a number of roles. In the human body for example, ions help to
regulate the internal environment (e.g. controlling muscle function, regulating blood pH).
Ions in solution also determine water hardness and pH.

• Water hardness is a measure of the mineral content of water. Hard water has a high
mineral concentration and generally also a high concentration of metal ions e.g. calcium
and magnesium. The opposite is true for soft water.

• pH is a measure of the concentration of hydrogen ions in solution. The formula used to
calculate pH is as follows:

pH = -log[H3O
+] or pH = -log[H+]

A solution with a pH less than 7 is considered acidic and more than 7 is considered basic
(or alkaline). A neutral solution has a pH of 7.

• Gases such as CO2, NO2 and SO2 dissolve in water to form weak acid solutions. Rain is
naturally acidic because of the high concentrations of carbon dioxide in the atmosphere.
Human activities such as burning fossil fuels, increase the concentration of these gases in
the atmosphere, resulting in acid rain.

• Conductivity is a measure of a solution’s ability to conduct an electric current.

• An electrolyte is a substance that contains free ions, and is therefore able to conduct an
electric current. Electrolytes can be divided into strong and weak electrolytes, based on
the extent to which the substance ionises in solution.

• A non-electrolyte cannot conduct an electric current because it dooes not contain free
ions.

• The type of substance, the concentration of ions and the temperature of the solution,
affect its conductivity.
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• A precipitate is formed when ions in solution react with each other to form an insoluble
product. Solubility ’rules’ help to identify the precipitate that has been formed.

• A number of tests can be used to identify whether certain anions are present in a solution.

• Despite the importance of the hydrosphere, a number of factors threaten it. These include
overuse of water, and pollution.

Exercise: Summary Exercise

1. Give one word for each of the following descriptions:

(a) the change in phase of water from a gas to a liquid

(b) a charged atom

(c) a term used to describe the mineral content of water

(d) a gas that forms sulfuric acid when it reacts with water

2. Match the information in column A with the information in column B by writing
only the letter (A to I) next to the question number (1 to 7)

Column A Column B
1. A polar molecule A. H2SO4

2. molecular solution B. CaCO3

3. Mineral that increases water hardness C. NaOH
4. Substance that increases the hydrogen ion concentration D. salt water
5. A strong electrolyte E. calcium
6. A white precipitate F. carbon dioxide
7. A non-conductor of electricity G. potassium nitrate

H. sugar water
I. O2

3. For each of the following questions, choose the one correct answer from the
list provided.

(a) Which one of the following substances does not conduct electricity in the
solid phase but is an electrical conductor when molten?

i. Cu

ii. PbBr2
iii. H2O

iv. I2

(IEB Paper 2, 2003)

(b) The following substances are dissolved in water. Which one of the solutions
is basic?

i. sodium nitrate

ii. calcium sulphate

iii. ammonium chloride

iv. potassium carbonate

(IEB Paper 2, 2005)

4. The concentration of hydronium and hydroxyl ions in a typical sample of sea-
water are 10−8 and 10−6 respectively.

(a) Is the seawater acidic or basic?

(b) Calculate the pH of this seawater.

5. Three test tubes (X, Y and Z) each contain a solution of an unknown potassium
salt. The following observations were made during a practical investigation to
identify the solutions in the test tubes:
A: A white precipitate formed when silver nitrate (AgNO3) was added to test
tube Z.
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B: A white precipitate formed in test tubes X and Y when barium chloride
(BaCl2) was added.

C: The precipitate in test tube X dissolved in hydrochloric acid (HCl) and a gas
was released.

D: The precipitate in test tube Y was insoluble in hydrochloric acid.

(a) Use the above information to identify the solutions in each of the test tubes
X, Y and Z.

(b) Write a chemical equation for the reaction that took place in test tube X
before hydrochloric acid was added.

(DoE Exemplar Paper 2 2007)
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Chapter 10

Units

10.1 Introduction

Imagine you had to make curtains and needed to buy fabric. The shop assistant would need
to know how much fabric you needed. Telling her you need fabric 2 wide and 6 long would be
insufficient — you have to specify the unit (i.e. 2 metres wide and 6 metres long). Without
the unit the information is incomplete and the shop assistant would have to guess. If you were
making curtains for a doll’s house the dimensions might be 2 centimetres wide and 6 centimetres
long!

It is not just lengths that have units, all physical quantities have units (e.g. time, temperature,
distance, etc.).

Definition: Physical Quantity
A physical quantity is anything that you can measure. For example, length, temperature,
distance and time are physical quantities.

10.2 Unit Systems

10.2.1 SI Units

We will be using the SI units in this course. SI units are the internationally agreed upon units.
Historically these units are based on the metric system which was developed in France at the
time of the French Revolution.

Definition: SI Units
The name SI units comes from the French Système International d’Unités, which means
international system of units.

There are seven base SI units. These are listed in Table 10.1. All physical quantities have units
which can be built from these seven base units. So, it is possible to create a different set of
units by defining a different set of base units.

These seven units are called base units because none of them can be expressed as combinations
of the other six. This is identical to bricks and concrete being the base units of a building. You
can build different things using different combinations of bricks and concrete. The 26 letters of
the alphabet are the base units for a language like English. Many different words can be formed
by using these letters.
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Base quantity Name Symbol
length metre m
mass kilogram kg
time second s

electric current ampere A
temperature kelvin K

amount of substance mole mol
luminous intensity candela cd

Table 10.1: SI Base Units

10.2.2 The Other Systems of Units

The SI Units are not the only units available, but they are most widely used. In Science there
are three other sets of units that can also be used. These are mentioned here for interest only.

c.g.s. Units

In the c.g.s. system, the metre is replaced by the centimetre and the kilogram is replaced by the
gram. This is a simple change but it means that all units derived from these two are changed.
For example, the units of force and work are different. These units are used most often in
astrophysics and atomic physics.

Imperial Units

Imperial units arose when kings and queens decided the measures that were to be used in the
land. All the imperial base units, except for the measure of time, are different to those of SI
units. This is the unit system you are most likely to encounter if SI units are not used. Examples
of imperial units are pounds, miles, gallons and yards. These units are used by the Americans
and British. As you can imagine, having different units in use from place to place makes scientific
communication very difficult. This was the motivation for adopting a set of internationally agreed
upon units.

Natural Units

This is the most sophisticated choice of units. Here the most fundamental discovered quantities
(such as the speed of light) are set equal to 1. The argument for this choice is that all other
quantities should be built from these fundamental units. This system of units is used in high
energy physics and quantum mechanics.

10.3 Writing Units as Words or Symbols

Unit names are always written with a lowercase first letter, for example, we write metre and litre.
The symbols or abbreviations of units are also written with lowercase initials, for example m for
metre and ℓ for litre. The exception to this rule is if the unit is named after a person, then the
symbol is a capital letter. For example, the kelvin was named after Lord Kelvin and its symbol is
K. If the abbreviation of the unit that is named after a person has two letters, the second letter
is lowercase, for example Hz for hertz.

Exercise: Naming of Units
For the following symbols of units that you will come across later in this book,

write whether you think the unit is named after a person or not.
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1. J (joule)

2. ℓ (litre)

3. N (newton)

4. mol (mole)

5. C (coulomb)

6. lm (lumen)

7. m (metre)

8. bar (bar)

10.4 Combinations of SI Base Units

To make working with units easier, some combinations of the base units are given special names,
but it is always correct to reduce everything to the base units. Table 10.2 lists some examples
of combinations of SI base units that are assigned special names. Do not be concerned if the
formulae look unfamiliar at this stage - we will deal with each in detail in the chapters ahead (as
well as many others)!

It is very important that you are able to recognise the units correctly. For instance, the new-
ton (N) is another name for the kilogram metre per second squared (kg·m·s−2), while the
kilogram metre squared per second squared (kg·m2 ·s−2) is called the joule (J).

Quantity Formula
Unit Expressed in Name of

Base Units Combination
Force ma kg·m·s−2 N (newton)

Frequency 1
T

s−1 Hz (hertz)
Work Fs kg·m2 ·s−2 J (joule)

Table 10.2: Some examples of combinations of SI base units assigned special names

Important: When writing combinations of base SI units, place a dot (·) between the units
to indicate that different base units are used. For example, the symbol for metres per second
is correctly written as m·s−1, and not as ms−1 or m/s.

10.5 Rounding, Scientific Notation and Significant Figures

10.5.1 Rounding Off

Certain numbers may take an infinite amount of paper and ink to write out. Not only is
that impossible, but writing numbers out to a high precision (many decimal places) is very
inconvenient and rarely gives better answers. For this reason we often estimate the number to a
certain number of decimal places. Rounding off or approximating a decimal number to a given
number of decimal places is the quickest way to approximate a number. For example, if you
wanted to round-off 2,6525272 to three decimal places then you would first count three places
after the decimal.

2,652|5272

All numbers to the right of | are ignored after you determine whether the number in the third
decimal place must be rounded up or rounded down. You round up the final digit (make the
digit one more) if the first digit after the | was greater or equal to 5 and round down (leave the
digit alone) otherwise. So, since the first digit after the | is a 5, we must round up the digit in
the third decimal place to a 3 and the final answer of 2,6525272 rounded to three decimal places
is 2,653.
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Worked Example 17: Rounding-off
Question: Round off π = 3,141592654 . . . to 4 decimal places.
Answer
Step 3 : Determine the last digit that is kept and mark the cut-off
with |.
π = 3,1415|92654 . . .
Step 4 : Determine whether the last digit is rounded up or down.
The last digit of π = 3,1415|92654 . . . must be rounded up because there is
a 9 after the |.
Step 5 : Write the final answer.
π = 3,1416 rounded to 4 decimal places.

Worked Example 18: Rounding-off
Question: Round off 9,191919 . . . to 2 decimal places
Answer
Step 1 : Determine the last digit that is kept and mark the cut-off
with |.
9,19|1919 . . .
Step 2 : Determine whether the last digit is rounded up or down.
The last digit of 9,19|1919 . . . must be rounded down because there is a 1
after the |.
Step 3 : Write the final answer.
Answer = 9,19 rounded to 2 decimal places.

10.5.2 Error Margins

In a calculation that has many steps, it is best to leave the rounding off right until the end. For
example, Jack and Jill walk to school. They walk 0,9 kilometers to get to school and it takes
them 17 minutes. We can calculate their speed in the following two ways.

Method 1 Method 2
Change 17 minutes to hours: Change 17 minutes to hours:

time in hours =
17 min

60 min
= 0,283333333 hr

time in hours =
17 min

60 min
= 0,28 hr

speed =
Distance

Time

=
0,9 km

0,28333333 hr

= 3,176470588 km·hr−1

= 3,18 km·hr−1

speed =
Distance

Time

=
0,9 km

0,28 hr

= 3,214285714 km·hr−1

= 3,21 km·hr−1

Table 10.3: Rounding numbers

146



CHAPTER 10. UNITS 10.5

You will see that we get two different answers. In Method 1 no rounding was done, but in Method
2, the time was rounded to 2 decimal places. This made a big difference to the answer. The
answer in Method 1 is more accurate because rounded numbers were not used in the calculation.
Always only round off your final answer.

10.5.3 Scientific Notation

In Science one often needs to work with very large or very small numbers. These can be written
more easily in scientific notation, in the general form

d× 10e

where d is a decimal number between 0 and 10 that is rounded off to a few decimal places. e is
known as the exponent and is an integer. If e > 0 it represents how many times the decimal
place in d should be moved to the right. If e < 0, then it represents how many times the decimal
place in d should be moved to the left. For example 3,24 × 103 represents 3240 (the decimal
moved three places to the right) and 3,24× 10−3 represents 0,00324 (the decimal moved three
places to the left).

If a number must be converted into scientific notation, we need to work out how many times
the number must be multiplied or divided by 10 to make it into a number between 1 and 10
(i.e. the value of e) and what this number between 1 and 10 is (the value of d). We do this by
counting the number of decimal places the decimal comma must move.

For example, write the speed of light in scientific notation, to two decimal places. The speed of
light is 299 792 458 m·s−1. First, find where the decimal comma must go for two decimal places
(to find d) and then count how many places there are after the decimal comma to determine e.

In this example, the decimal comma must go after the first 2, but since the number after the 9
is 7, d = 3,00. e = 8 because there are 8 digits left after the decimal comma. So the speed of
light in scientific notation, to two decimal places is 3,00 × 108 m·s−1.

10.5.4 Significant Figures

In a number, each non-zero digit is a significant figure. Zeroes are only counted if they are
between two non-zero digits or are at the end of the decimal part. For example, the number
2000 has 1 significant figure (the 2), but 2000,0 has 5 significant figures. You estimate a number
like this by removing significant figures from the number (starting from the right) until you have
the desired number of significant figures, rounding as you go. For example 6,827 has 4 significant
figures, but if you wish to write it to 3 significant figures it would mean removing the 7 and
rounding up, so it would be 6,83.

Exercise: Using Significant Figures

1. Round the following numbers:

(a) 123,517 ℓ to 2 decimal places

(b) 14,328 km·h−1 to one decimal place

(c) 0,00954 m to 3 decimal places

2. Write the following quantities in scientific notation:

(a) 10130 Pa to 2 decimal places

(b) 978,15 m·s−2 to one decimal place

(c) 0,000001256 A to 3 decimal places

3. Count how many significant figures each of the quantities below has:

(a) 2,590 km

(b) 12,305 mℓ

(c) 7800 kg
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10.6 Prefixes of Base Units

Now that you know how to write numbers in scientific notation, another important aspect of
units is the prefixes that are used with the units.

Definition: Prefix
A prefix is a group of letters that are placed in front of a word. The effect of the prefix is to
change meaning of the word. For example, the prefix un is often added to a word to mean
not, as in unnecessary which means not necessary.

In the case of units, the prefixes have a special use. The kilogram (kg) is a simple example.
1 kg is equal to 1 000 g or 1× 103 g. Grouping the 103 and the g together we can replace the
103 with the prefix k (kilo). Therefore the k takes the place of the 103.
The kilogram is unique in that it is the only SI base unit containing a prefix.

In Science, all the prefixes used with units are some power of 10. Table 10.4 lists some of
these prefixes. You will not use most of these prefixes, but those prefixes listed in bold should
be learnt. The case of the prefix symbol is very important. Where a letter features twice in the
table, it is written in uppercase for exponents bigger than one and in lowercase for exponents
less than one. For example M means mega (106) and m means milli (10−3).

Prefix Symbol Exponent Prefix Symbol Exponent
yotta Y 1024 yocto y 10−24

zetta Z 1021 zepto z 10−21

exa E 1018 atto a 10−18

peta P 1015 femto f 10−15

tera T 1012 pico p 10−12

giga G 109 nano n 10−9

mega M 106 micro µ 10−6

kilo k 103 milli m 10−3

hecto h 102 centi c 10−2

deca da 101 deci d 10−1

Table 10.4: Unit Prefixes

Important: There is no space and no dot between the prefix and the symbol for the unit.

Here are some examples of the use of prefixes:

• 40000 m can be written as 40 km (kilometre)

• 0,001 g is the same as 1× 10−3 g and can be written as 1 mg (milligram)

• 2,5× 106 N can be written as 2,5 MN (meganewton)

• 250000 A can be written as 250 kA (kiloampere) or 0,250 MA (megaampere)

• 0,000000075 s can be written as 75 ns (nanoseconds)

• 3×10−7 mol can be rewritten as 0,3×10−6 mol, which is the same as 0,3 µmol (micromol)
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Exercise: Using Scientific Notation

1. Write the following in scientific notation using Table 10.4 as a reference.

(a) 0,511 MV

(b) 10 cℓ

(c) 0,5 µm

(d) 250 nm

(e) 0,00035 hg

2. Write the following using the prefixes in Table 10.4.

(a) 1,602 ×10−19 C

(b) 1,992 ×106 J

(c) 5,98 ×104 N

(d) 25 ×10−4 A

(e) 0,0075 ×106 m

10.7 The Importance of Units

Without units much of our work as scientists would be meaningless. We need to express our
thoughts clearly and units give meaning to the numbers we measure and calculate. Depending
on which units we use, the numbers are different. For example if you have 12 water, it means
nothing. You could have 12 ml of water, 12 litres of water, or even 12 bottles of water. Units
are an essential part of the language we use. Units must be specified when expressing physical
quantities. Imagine that you are baking a cake, but the units, like grams and millilitres, for the
flour, milk, sugar and baking powder are not specified!

Activity :: Investigation : Importance of Units
Work in groups of 5 to discuss other possible situations where using the incorrect

set of units can be to your disadvantage or even dangerous. Look for examples at
home, at school, at a hospital, when travelling and in a shop.

Activity :: Case Study : The importance of units
Read the following extract from CNN News 30 September 1999 and answer the

questions below.
NASA: Human error caused loss of Mars orbiter November 10, 1999
Failure to convert English measures to metric values caused the loss of the Mars

Climate Orbiter, a spacecraft that smashed into the planet instead of reaching a safe
orbit, a NASA investigation concluded Wednesday.

The Mars Climate Orbiter, a key craft in the space agency’s exploration of the
red planet, vanished on 23 September after a 10 month journey. It is believed that
the craft came dangerously close to the atmosphere of Mars, where it presumably
burned and broke into pieces.

An investigation board concluded that NASA engineers failed to convert English
measures of rocket thrusts to newton, a metric system measuring rocket force. One
English pound of force equals 4,45 newtons. A small difference between the two
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values caused the spacecraft to approach Mars at too low an altitude and the craft
is thought to have smashed into the planet’s atmosphere and was destroyed.

The spacecraft was to be a key part of the exploration of the planet. From its
station about the red planet, the Mars Climate Orbiter was to relay signals from the
Mars Polar Lander, which is scheduled to touch down on Mars next month.

“The root cause of the loss of the spacecraft was a failed translation of English
units into metric units and a segment of ground-based, navigation-related mission
software,” said Arthus Stephenson, chairman of the investigation board.

Questions:

1. Why did the Mars Climate Orbiter crash? Answer in your own words.

2. How could this have been avoided?

3. Why was the Mars Orbiter sent to Mars?

4. Do you think space exploration is important? Explain your answer.

10.8 How to Change Units

It is very important that you are aware that different systems of units exist. Furthermore, you
must be able to convert between units. Being able to change between units (for example,
converting from millimetres to metres) is a useful skill in Science.

The following conversion diagrams will help you change from one unit to another.

mm m km

÷1000 ÷1000

×1000 ×1000

Figure 10.1: The distance conversion table

If you want to change millimetre to metre, you divide by 1000 (follow the arrow from mm to m);
or if you want to change kilometre to millimetre, you multiply by 1000×1000.

The same method can be used to change millilitre to litre or kilolitre. Use figure 10.2 to
change volumes:

mℓ ℓ kℓ

÷1000 ÷1000

×1000 ×1000

dm3 m3

Figure 10.2: The volume conversion table

Worked Example 19: Conversion 1
Question: Express 3 800 mm in metres.
Answer
Step 1 : Find the two units on the conversion diagram.
Use Figure 10.1 . Millimetre is on the left and metre in the middle.
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Step 2 : Decide whether you are moving to the left or to the right.
You need to go from mm to m, so you are moving from left to right.

Step 3 : Read from the diagram what you must do and find the
answer.
3 800 mm ÷ 1000 = 3,8 m

Worked Example 20: Conversion 2
Question: Convert 4,56 kg to g.
Answer
Step 1 : Find the two units on the conversion diagram.
Use Figure 10.1. Kilogram is the same as kilometre and gram the same as
metre.

Step 2 : Decide whether you are moving to the left or to the right.
You need to go from kg to g, so it is from right to left.

Step 3 : Read from the diagram what you must do and find the
answer.
4,56 kg × 1000 = 4560 g

10.8.1 Two other useful conversions

Very often in Science you need to convert speed and temperature. The following two rules will
help you do this:

Converting speed
When converting km·h−1 to m·s−1you divide by 3,6. For example 72 km·h−1 ÷ 3,6 = 20 m·s−1.

When converting m·s−1to km·h−1, you multiply by 3,6. For example 30 m·s−1×3,6 = 108 km·h−1.

Converting temperature
Converting between the kelvin and celsius temperature scales is easy. To convert from celsius
to kelvin add 273. To convert from kelvin to celsius subtract 273. Representing the kelvin
temperature by TK and the celsius temperature by ToC ,

TK = ToC + 273

10.9 A sanity test

A sanity test is a method of checking whether an answer makes sense. All we have to do is to
take a careful look at our answer and ask the question Does the answer make sense?

Imagine you were calculating the number of people in a classroom. If the answer you got was
1 000 000 people you would know it was wrong — it is not possible to have that many people
in a classroom. That is all a sanity test is — is your answer insane or not?

It is useful to have an idea of some numbers before we start. For example, let us consider masses.
An average person has a mass around 70 kg, while the heaviest person in medical history had a
mass of 635 kg. If you ever have to calculate a person’s mass and you get 7 000 kg, this should
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fail your sanity check — your answer is insane and you must have made a mistake somewhere.
In the same way an answer of 0.01 kg should fail your sanity test.

The only problem with a sanity check is that you must know what typical values for things are.
For example, finding the number of learners in a classroom you need to know that there are
usually 20–50 people in a classroom. If you get and answer of 2500, you should realise that it is
wrong.

Activity :: The scale of the matter... : Try to get an idea of the typical
values for the following physical quantities and write your answers into the
table:

Category Quantity Minimum Maximum

People
mass
height

Transport

speed of cars on freeways
speed of trains
speed of aeroplanes
distance between home and school

General
thickness of a sheet of paper
height of a doorway

10.10 Summary

1. You need to know the seven base SI Units as listed in table 10.1. Combinations of SI Units
can have different names.

2. Unit names and abbreviations are written with lowercase letter unless it is named after a
person.

3. Rounding numbers and using scientific notation is important.

4. Table 10.4 summarises the prefixes used in Science.

5. Use figures 10.1 and 10.2 to convert between units.

10.11 End of Chapter Exercises

1. Write down the SI unit for the each of the following quantities:

(a) length

(b) time

(c) mass

(d) quantity of matter

(4)

2. For each of the following units, write down the symbol and what power of 10 it represents:

(a) millimetre

(b) centimetre

(c) metre

(d) kilometre
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(4)

3. For each of the following symbols, write out the unit in full and write what power of 10 it
represents:

(a) µg

(b) mg

(c) kg

(d) Mg

(4)

4. Write each of the following in scientific notation, correct to 2 decimal places:

(a) 0,00000123 N

(b) 417 000 000 kg

(c) 246800 A

(d) 0,00088 mm

(4)

5. Rewrite each of the following, accurate to two decimal places, using the correct prefix
where applicable:

(a) 0,00000123 N

(b) 417 000 000 kg

(c) 246800 A

(d) 0,00088 mm

(4)

6. For each of the following, write the measurement using the correct symbol for the prefix
and the base unit:

(a) 1,01 microseconds

(b) 1 000 milligrams

(c) 7,2 megameters

(d) 11 nanolitre

(4)

7. The Concorde is a type of aeroplane that flies very fast. The top speed of the Concorde is
2 172 km·hr−1. Convert the Concorde’s top speed to m·s−1.

(3)

8. The boiling point of water is 100 ◦C. What is the boiling point of water in kelvin?

(3)

Total = 30
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Chapter 11

Motion in One Dimension - Grade
10

11.1 Introduction

This chapter is about how things move in a straight line or more scientifically how things move in
one dimension. This is useful for learning how to describe the movement of cars along a straight
road or of trains along straight railway tracks. If you want to understand how any object moves,
for example a car on the freeway, a soccer ball being kicked towards the goal or your dog chasing
the neighbour’s cat, then you have to understand three basic ideas about what it means when
something is moving. These three ideas describe different parts of exactly how an object moves.
They are:

1. position or displacement which tells us exactly where the object is,

2. speed or velocity which tells us exactly how fast the object’s position is changing or more
familiarly, how fast the object is moving, and

3. acceleration which tells us exactly how fast the object’s velocity is changing.

You will also learn how to use position, displacement, speed, velocity and acceleration to describe
the motion of simple objects. You will learn how to read and draw graphs that summarise the
motion of a moving object. You will also learn about the equations that can be used to describe
motion and how to apply these equations to objects moving in one dimension.

11.2 Reference Point, Frame of Reference and Position

The most important idea when studying motion, is you have to know where you are. The
word position describes your location (where you are). However, saying that you are here is
meaningless, and you have to specify your position relative to a known reference point. For
example, if you are 2 m from the doorway, inside your classroom then your reference point is
the doorway. This defines your position inside the classroom. Notice that you need a reference
point (the doorway) and a direction (inside) to define your location.

11.2.1 Frames of Reference

Definition: Frame of Reference
A frame of reference is a reference point combined with a set of directions.

A frame of reference is similar to the idea of a reference point. A frame of reference is defined
as a reference point combined with a set of directions. For example, a boy is standing still inside
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b

train moving from left to rightboy is standing still

From your frame of reference the boy is moving from left to right.

Figure 11.1: Frames of Reference

a train as it pulls out of a station. You are standing on the platform watching the train move
from left to right. To you it looks as if the boy is moving from left to right, because relative
to where you are standing (the platform), he is moving. According to the boy, and his frame of
reference (the train), he is not moving.

A frame of reference must have an origin (where you are standing on the platform) and at least
a positive direction. The train was moving from left to right, making to your right positive and
to your left negative. If someone else was looking at the same boy, his frame of reference will
be different. For example, if he was standing on the other side of the platform, the boy will be
moving from right to left.

For this chapter, we will only use frames of reference in the x-direction. Frames of reference will
be covered in more detail in Grade 12.

A boy inside a train which
is moving from left to right

Where you are standing
on the platform

(reference point or origin)

positive direction (towards your right)negative direction (towards your left)

11.2.2 Position

Definition: Position
Position is a measurement of a location, with reference to an origin.

A position is a measurement of a location, with reference to an origin. Positions can therefore be
negative or positive. The symbol x is used to indicate position. x has units of length for example
cm, m or km. Figure 11.2.2 shows the position of a school. Depending on what reference point
we choose, we can say that the school is 300 m from Joan’s house (with Joan’s house as the
reference point or origin) or 500 m from Joel’s house (with Joel’s house as the reference point
or origin).

The shop is also 300 m from Joan’s house, but in the opposite direction as the school. When
we choose a reference point, we have a positive direction and a negative direction. If we choose
the direction towards the school as positive, then the direction towards the shop is negative. A
negative direction is always opposite to the direction chosen as positive.
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100 m 100 m 100 m 100 m 100 m 100 m

ShopSchool Jack John Joan Jill Joel

Figure 11.2: Illustration of position

+300 +200 +100 0 -100 -200 -300

School
Joan’s house

(reference point) Shop

x (m)

Figure 11.3: The origin is at Joan’s house and the position of the school is +300 m. Positions
towards the left are defined as positive and positions towards the right are defined as negative.

Activity :: Discussion : Reference Points

Divide into groups of 5 for this activity. On a straight line, choose a refer-
ence point. Since position can have both positive and negative values, discuss the
advantages and disadvantages of choosing

1. either end of the line,

2. the middle of the line.

This reference point can also be called “the origin”.

Exercise: Position

1. Write down the positions for objects at A, B, D and E. Do not forget the units.

-4 -3 -2 -1 0 1 2 3 4
x (m)

reference point
A B D E

2. Write down the positions for objects at F, G, H and J. Do not forget the units.

-4-3-2-101234
x (m)

reference point
F G H J

3. There are 5 houses on Newton Street, A, B, C, D and E. For all cases, assume
that positions to the right are positive.

157



11.3 CHAPTER 11. MOTION IN ONE DIMENSION - GRADE 10

20 m 20 m 20 m 20 m

A B C D E

(a) Draw a frame of reference with house A as the origin and write down the
positions of houses B, C, D and E.

(b) You live in house C. What is your position relative to house E?

(c) What are the positions of houses A, B and D, if house B is taken as the
reference point?

11.3 Displacement and Distance

Definition: Displacement
Displacement is the change in an object’s position.

The displacement of an object is defined as its change in position (final position minus initial
position). Displacement has a magnitude and direction and is therefore a vector. For example,
if the initial position of a car is xi and it moves to a final position of xf , then the displacement
is:

xf − xi

However, subtracting an initial quantity from a final quantity happens often in Physics, so we
use the shortcut ∆ to mean final - initial. Therefore, displacement can be written:

∆x = xf − xi

Important: The symbol ∆ is read out as delta. ∆ is a letter of the Greek alphabet and is
used in Mathematics and Science to indicate a change in a certain quantity, or a final value
minus an initial value. For example, ∆x means change in x while ∆t means change in t.

Important: The words initial and final will be used very often in Physics. Initial will always
refer to something that happened earlier in time and final will always refer to something
that happened later in time. It will often happen that the final value is smaller than the
initial value, such that the difference is negative. This is ok!

Displacement does not depend on the path travelled, but only on the initial and final positions
(Figure 11.4). We use the word distance to describe how far an object travels along a particular
path. Distance is the actual distance that was covered. Distance (symbol d) does not have a
direction, so it is a scalar. Displacement is the shortest distance from the starting point to the
endpoint – from the school to the shop in the figure. Displacement has direction and is therefore
a vector.

Figure 11.2.2 shows the five houses we discussed earlier. Jack walks to school, but instead of
walking straight to school, he decided to walk to his friend Joel’s house first to fetch him so that
they can walk to school together. Jack covers a distance of 400 m to Joel’s house and another
500 m to school. He covers a distance of 900 m. His displacement, however, is only 100 m
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b

b

Start
(School)

Finish
(Shop)

Di
sp
lac
em
en
t

Figure 11.4: Illustration of displacement

towards the school. This is because displacement only looks at the starting position (his house)
and the end position (the school). It does not depend on the path he travelled.

To calculate his distance and displacement, we need to choose a reference point and a direction.
Let’s choose Jack’s house as the reference point, and towards Joel’s house as the positive direc-
tion (which means that towards the school is negative). We would do the calculations as follows:

Distance(d) = path travelled

= 400 m + 500 m

= 900 m

Displacement(∆x) = xf − xi

= −100 m + 0 m

= −100 m

Joel walks to school with Jack and after school walks back home. What is Joel’s displacement
and what distance did he cover? For this calculation we use Joel’s house as the reference point.
Let’s take towards the school as the positive direction.

Distance(d) = path travelled

= 500 m + 500 m

= 1000 m

Displacement(∆x) = xf − xi

= 0 m+ 0 m

= 0 m

It is possible to have a displacement of 0 m and a distance that is not 0 m. This happens
when an object completes a round trip back to its original position, like an athlete running
around a track.

11.3.1 Interpreting Direction

Very often in calculations you will get a negative answer. For example, Jack’s displacement in
the example above, is calculated as -100 m. The minus sign in front of the answer means that
his displacement is 100 m in the opposite direction (opposite to the direction chosen as positive
in the beginning of the question). When we start a calculation we choose a frame of reference
and a positive direction. In the first example above, the reference point is Jack’s house and the
positive direction is towards Joel’s house. Therefore Jack’s displacement is 100 m towards the
school. Notice that distance has no direction, but displacement has.

11.3.2 Differences between Distance and Displacement

Definition: Vectors and Scalars
A vector is a physical quantity with magnitude (size) and direction. A scalar is a physical
quantity with magnitude (size) only.
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The differences between distance and displacement can be summarised as:

Distance Displacement
1. depends on the path 1. independent of path taken
2. always positive 2. can be positive or negative
3. is a scalar 3. is a vector

Exercise: Point of Reference

1. Use Figure 11.2.2 to answer the following questions.

(a) Jill walks to Joan’s house and then to school, what is her distance and
displacement?

(b) John walks to Joan’s house and then to school, what is his distance and
displacement?

(c) Jack walks to the shop and then to school, what is his distance and dis-
placement?

(d) What reference point did you use for each of the above questions?

2. You stand at the front door of your house (displacement, ∆x = 0 m). The
street is 10 m away from the front door. You walk to the street and back again.

(a) What is the distance you have walked?

(b) What is your final displacement?

(c) Is displacement a vector or a scalar? Give a reason for your answer.

11.4 Speed, Average Velocity and Instantaneous Velocity

Definition: Velocity
Velocity is the rate of change of displacement.

Definition: Instantaneous velocity
Instantaneous velocity is the velocity of a body at a specific instant in time.

Definition: Average velocity
Average velocity is the total displacement of a body over a time interval.

Velocity is the rate of change of position. It tells us how much an object’s position changes in
time. This is the same as the displacement divided by the time taken. Since displacement is a
vector and time taken is a scalar, velocity is also a vector. We use the symbol v for velocity. If
we have a displacement of ∆x and a time taken of ∆t, v is then defined as:

velocity (in m · s−1) =
change in displacement (in m)

change in time (in s)

v =
∆x

∆t
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Velocity can be positive or negative. Positive values of velocity mean that the object is moving
away from the reference point or origin and negative values mean that the object is moving
towards the reference point or origin.

Important: An instant in time is different from the time taken or the time interval. It
is therefore useful to use the symbol t for an instant in time (for example during the 4th

second) and the symbol ∆t for the time taken (for example during the first 5 seconds of
the motion).

Average velocity (symbol v) is the displacement for the whole motion divided by the time taken
for the whole motion. Instantaneous velocity is the velocity at a specific instant in time.

(Average) Speed (symbol s) is the distance travelled (d) divided by the time taken (∆t) for
the journey. Distance and time are scalars and therefore speed will also be a scalar. Speed is
calculated as follows:

speed (in m · s−1) =
distance (in m)

time (in s)

s =
d

∆t

Instantaneous speed is the magnitude of instantaneous velocity. It has the same value, but no
direction.

Worked Example 21: Average speed and average velocity
Question: James walks 2 km away from home in 30 minutes. He then
turns around and walks back home along the same path, also in 30 minutes.
Calculate James’ average speed and average velocity.

2 km

Answer
Step 1 : Identify what information is given and what is asked for
The question explicitly gives

• the distance and time out (2 km in 30 minutes)

• the distance and time back (2 km in 30 minutes)

Step 2 : Check that all units are SI units.
The information is not in SI units and must therefore be converted.
To convert km to m, we know that:

1 km = 1 000 m

∴ 2 km = 2 000 m (multiply both sides by 2, because we want to convert 2 km to m.)

Similarly, to convert 30 minutes to seconds,

1 min = 60s

∴ 30 min = 1 800 s (multiply both sides by 30)

Step 3 : Determine James’ displacement and distance.
James started at home and returned home, so his displacement is 0 m.

∆x = 0 m
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James walked a total distance of 4 000 m (2 000 m out and 2 000 m back).

d = 4 000 m

Step 4 : Determine his total time.
James took 1 800 s to walk out and 1 800 s to walk back.

∆t = 3 600 s

Step 5 : Determine his average speed

s =
d

∆t

=
4 000 m

3 600 s

= 1,11 m · s−1

Step 6 : Determine his average velocity

v =
∆x

∆t

=
0 m

3 600 s

= 0 m · s−1

Worked Example 22: Instantaneous Speed and Velocity
Question: A man runs around a circular track of radius 100 m. It takes
him 120 s to complete a revolution of the track. If he runs at constant
speed, calculate:

1. his speed,

2. his instantaneous velocity at point A,

3. his instantaneous velocity at point B,

4. his average velocity between points A
and B,

5. his average speed during a revolution.

6. his average velocity during a revolution.

N

S

W E

100 m
Direction the man runs

b

A

b B

Answer
Step 1 : Decide how to approach the problem
To determine the man’s speed we need to know the distance he travels and
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how long it takes. We know it takes 120 s to complete one revolution of
the track.(A revolution is to go around the track once.)

Step 2 : Determine the distance travelled
What distance is one revolution of the track? We know the track is a circle
and we know its radius, so we can determine the distance around the circle.
We start with the equation for the circumference of a circle

C = 2πr

= 2π(100m)

= 628,32m

Therefore, the distance the man covers in one revolution is 628,32 m.

Step 3 : Determine the speed

We know that speed is distance cov-
ered per unit time. So if we divide the
distance covered by the time it took
we will know how much distance was
covered for every unit of time. No di-
rection is used here because speed is
a scalar.

s =
d

∆t

=
628,32m

120 s

= 5,24m · s−1

Step 4 : Determine the instantaneous velocity at A

Consider the point A in the diagram.
We know which way the man is
running around the track and we
know his speed. His velocity at point
A will be his speed (the magnitude
of the velocity) plus his direction of
motion (the direction of his velocity).
The instant that he arrives at A he is
moving as indicated in the diagram.

His velocity will be 5,24 m·s−1West.

Direction the man runs

b

A

b

A

Step 5 : Determine the instantaneous velocity at B

Consider the point B in the diagram.
We know which way the man is
running around the track and we
know his speed. His velocity at point
B will be his speed (the magnitude
of the velocity) plus his direction of
motion (the direction of his velocity).
The instant that he arrives at B he is
moving as indicated in the diagram.

His velocity will be 5,24 m·s−1South.

Direction the man runs
b B

b B

Step 6 : Determine the average velocity between A and B
To determine the average velocity between A and B, we need the change in
displacement between A and B and the change in time between A and B.
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The displacement from A and B can be calculated by using the Theorem of
Pythagoras:

(∆x)2 = (100 m)2 + (100 m)2

= 20000 m

∆x = 141,42135... m

The time for a full revolution is 120 s,
therefore the time for a 1

4 of a revolu-
tion is 30 s.

vAB =
∆x

∆t

=
141,42... m

30 s

= 4.71 m · s−1

100 m

100 m

A

B O

∆x

Velocity is a vector and needs a direction.
Triangle AOB is isosceles and therefore angle BAO = 45◦.
The direction is between west and south and is therefore southwest.
The final answer is: v = 4.71 m·s−1, southwest.

Step 7 : Determine his average speed during a revolution
Because he runs at a constant rate, we know that his speed anywhere
around the track will be the same. His average speed is 5,24 m·s−1.

Step 8 : Determine his average velocity over a complete revolution

Important: Remember - displacement can be zero even when distance
travelled is not!

To calculate average velocity we need his total displacement and his total
time. His displacement is zero because he ends up where he started. His
time is 120 s. Using these we can calculate his average velocity:

v =
∆x

∆t

=
0 m

120 s

= 0 m·s−1

11.4.1 Differences between Speed and Velocity

The differences between speed and velocity can be summarised as:

Speed Velocity
1. depends on the path taken 1. independent of path taken
2. always positive 2. can be positive or negative
3. is a scalar 3. is a vector
4. no dependence on direction and
so is only positive

4. direction can be guessed from
the sign (i.e. positive or negative)
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Additionally, an object that makes a round trip, i.e. travels away from its starting point and then
returns to the same point has zero velocity but travels a non-zero speed.

Exercise: Displacement and related quantities

1. Theresa has to walk to the shop to buy some milk. After walking 100 m, she
realises that she does not have enough money, and goes back home. If it took
her two minutes to leave and come back, calculate the following:

(a) How long was she out of the house (the time interval ∆t in seconds)?

(b) How far did she walk (distance (d))?

(c) What was her displacement (∆x)?

(d) What was her average velocity (in m·s−1)?

(e) What was her average speed (in m·s−1)?

b

100 m

2 minute there and back
100 m

homeshop

2. Desmond is watching a straight stretch of road from his classroom window.
He can see two poles which he earlier measured to be 50 m apart. Using his
stopwatch, Desmond notices that it takes 3 s for most cars to travel from the
one pole to the other.

(a) Using the equation for velocity (v = ∆x
∆t

), show all the working needed to
calculate the velocity of a car travelling from the left to the right.

(b) If Desmond measures the velocity of a red Golf to be -16,67 m·s−1, in
which direction was the Gold travelling?
Desmond leaves his stopwatch running, and notices that at t = 5,0 s, a
taxi passes the left pole at the same time as a bus passes the right pole.
At time t = 7,5 s the taxi passes the right pole. At time t = 9,0 s, the
bus passes the left pole.

(c) How long did it take the taxi and the bus to travel the distance between
the poles? (Calculate the time interval (∆t) for both the taxi and the bus).

(d) What was the velocity of the taxi and the bus?

(e) What was the speed of the taxi and the bus?

(f) What was the speed of taxi and the bus in km·h−1?

50 m

3 s

t = 5 s t = 7,5 s

t = 9 s t = 5 s
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3. After a long day, a tired man decides not to use the pedestrian bridge to cross
over a freeway, and decides instead to run across. He sees a car 100 m away
travelling towards him, and is confident that he can cross in time.

(a) If the car is travelling at 120 km·h−1, what is the car’s speed in m·s−1.

(b) How long will it take the a car to travel 100 m?

(c) If the man is running at 10 km·h−1, what is his speed in m·s−1?

(d) If the freeway has 3 lanes, and each lane is 3 m wide, how long will it take
for the man to cross all three lanes?

(e) If the car is travelling in the furthermost lane from the man, will he be able
to cross all 3 lanes of the freeway safely?

car3 m

3 m

3 m

100 m

Activity :: Investigation : An Exercise in Safety
Divide into groups of 4 and perform the following investigation. Each group will

be performing the same investigation, but the aim for each group will be different.

1. Choose an aim for your investigation from the following list and formulate a
hypothesis:

• Do cars travel at the correct speed limit?

• Is is safe to cross the road outside of a pedestrian crossing?

• Does the colour of your car determine the speed you are travelling at?

• Any other relevant question that you would like to investigate.

2. On a road that you often cross, measure out 50 m along a straight section, far
away from traffic lights or intersections.

3. Use a stopwatch to record the time each of 20 cars take to travel the 50 m
section you measured.

4. Design a table to represent your results. Use the results to answer the ques-
tion posed in the aim of the investigation. You might need to do some more
measurements for your investigation. Plan in your group what else needs to be
done.

5. Complete any additional measurements and write up your investigation under
the following headings:

• Aim and Hypothesis

• Apparatus

• Method

• Results

• Discussion

• Conclusion

6. Answer the following questions:

(a) How many cars took less than 3 seconds to travel 50 m?

(b) What was the shortest time a car took to travel 50 m?
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(c) What was the average time taken by the 20 cars?

(d) What was the average speed of the 20 cars?

(e) Convert the average speed to km·h−1.

11.5 Acceleration

Definition: Acceleration
Acceleration is the rate of change of velocity.

Acceleration (symbol a) is the rate of change of velocity. It is a measure of how fast the velocity
of an object changes in time. If we have a change in velocity (∆v) over a time interval (∆t),
then the acceleration (a) is defined as:

acceleration (in m · s−2) =
change in velocity (in m · s−1)

change in time (in s)

a =
∆v

∆t

Since velocity is a vector, acceleration is also a vector. Acceleration does not provide any infor-
mation about a motion, but only about how the motion changes. It is not possible to tell how
fast an object is moving or in which direction from the acceleration.
Like velocity, acceleration can be negative or positive. We see that when the sign of the acceler-
ation and the velocity are the same, the object is speeding up. If both velocity and acceleration
are positive, the object is speeding up in a positive direction. If both velocity and acceleration
are negative, the object is speeding up in a negative direction. If velocity is positive and accel-
eration is negative, then the object is slowing down. Similarly, if the velocity is negative and the
acceleration is positive the object is slowing down. This is illustrated in the following worked
example.

Worked Example 23: Acceleration
Question: A car accelerates uniformly from and initial velocity of 2 m·s−1

to a final velocity of 10 m·s1 in 8 seconds. It then slows down uniformly to
a final velocity of 4 m·s−1 in 6 seconds. Calculate the acceleration of the
car during the first 8 seconds and during the last 6 seconds.
Answer
Step 9 : Identify what information is given and what is asked for:
Consider the motion of the car in two parts: the first 8 seconds and the last
6 seconds.

For the first 8 seconds:

vi = 2 m · s−1

vf = 10 m · s−1

ti = 0 s

tf = 8 s

For the last 6 seconds:

vi = 10 m · s−1

vf = 4 m · s−1

ti = 8 s

tf = 14 s

Step 10 : Calculate the acceleration.
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For the first 8 seconds:

a =
∆v

∆t

=
10 m·s−1 − 2 m·s−1

8 s− 0 s

= 1 m · s−2

For the next 6 seconds:

a =
∆v

∆t

=
4 m·s−1 − 10 m·s−1

14 s− 8 s

= −1 m · s−2

During the first 8 seconds the car had a positive acceleration. This means
that its velocity increased. The velocity is positive so the car is speeding
up. During the next 6 seconds the car had a negative acceleration. This
means that its velocity decreased. The velocity is positive so the car is
slowing down.

Important: Acceleration does not tell us about the direction of the motion. Acceleration
only tells us how the velocity changes.

Important: Deceleration

Avoid the use of the word deceleration to refer to a negative acceleration. This word usually
means slowing down and it is possible for an object to slow down with both a positive and
negative acceleration, because the sign of the velocity of the object must also be taken into
account to determine whether the body is slowing down or not.

Exercise: Acceleration

1. An athlete is accelerating uniformly from an initial velocity of 0 m·s−1to a final
velocity of 4 m·s−1in 2 seconds. Calculate his acceleration. Let the direction
that the athlete is running in be the positive direction.

2. A bus accelerates uniformly from an initial velocity of 15 m·s−1to a final velocity
of 7 m·s−1in 4 seconds. Calculate the acceleration of the bus. Let the direction
of motion of the bus be the positive direction.

3. An aeroplane accelerates uniformly from an initial velocity of 200 m·s−1to a
velocity of 100 m·s−1in 10 seconds. It then accelerates uniformly to a final
velocity of 240 m·s−1in 20 seconds. Let the direction of motion of the aeroplane
be the positive direction.

(a) Calculate the acceleration of the aeroplane during the first 10 seconds of
the motion.

(b) Calculate the acceleration of the aeroplane during the next 14 seconds of
its motion.

(c) Calculate the acceleration of the aeroplane during the whole 24 seconds of
its motion.
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11.6 Description of Motion

The purpose of this chapter is to describe motion, and now that we understand the definitions of
displacement, distance, velocity, speed and acceleration, we are ready to start using these ideas
to describe how an object is moving. There are many ways of describing motion:

1. words

2. diagrams

3. graphs

These methods will be described in this section.

We will consider three types of motion: when the object is not moving (stationary object), when
the object is moving at a constant velocity (uniform motion) and when the object is moving at
a constant acceleration (motion at constant acceleration).

11.6.1 Stationary Object

The simplest motion that we can come across is that of a stationary object. A stationary object
does not move and so its position does not change, for as long as it is standing still. An example
of this situation is when someone is waiting for something without moving. The person remains
in the same position.

Lesedi is waiting for a taxi. He is standing two metres from a stop street at t = 0 s. After
one minute, at t = 60 s, he is still 2 metres from the stop street and after two minutes, at
t = 120 s, also 2 metres from the stop street. His position has not changed. His displacement
is zero (because his position is the same), his velocity is zero (because his displacement is zero)
and his acceleration is also zero (because his velocity is not changing).

STOP

2 m

t = 0 s
t = 60 s
t = 120 s

bb
b

displacement = 0 m

velocity = 0 m·s−1

acceleration = 0 m·s−2

We can now draw graphs of position vs. time (x vs. t), velocity vs. time (v vs. t) and
acceleration vs. time (a vs. t) for a stationary object. The graphs are shown in Figure 11.5.
Lesedi’s position is 2 metres from the stop street. If the stop street is taken as the reference
point, his position remains at 2 metres for 120 seconds. The graph is a horizontal line at 2 m.
The velocity and acceleration graphs are also shown. They are both horizontal lines on the x-
axis. Since his position is not changing, his velocity is 0 m·s−1and since velocity is not changing,
acceleration is 0 m·s−2.

Definition: Gradient
The gradient of a line can be calculated by dividing the change in the y-value by the change
in the x-value.
m = ∆y

∆x

Since we know that velocity is the rate of change of position, we can confirm the value for the
velocity vs. time graph, by calculating the gradient of the x vs. t graph.

Important: The gradient of a position vs. time graph gives the velocity.
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Figure 11.5: Graphs for a stationary object (a) position vs. time (b) velocity vs. time (c)
acceleration vs. time.

If we calculate the gradient of the x vs. t graph for a stationary object we get:

v =
∆x

∆t

=
xf − xi

tf − ti

=
2 m− 2 m

120 s− 60 s
(initial position = final position)

= 0 m · s−1 (for the time that Lesedi is stationary)

Similarly, we can confirm the value of the acceleration by calculating the gradient of the velocity
vs. time graph.

Important: The gradient of a velocity vs. time graph gives the acceleration.

If we calculate the gradient of the v vs. t graph for a stationary object we get:

a =
∆v

∆t

=
vf − vi
tf − ti

=
0 m · s−1 − 0 m · s−1

120 s− 60 s

= 0 m · s−2

Additionally, because the velocity vs. time graph is related to the position vs. time graph, we
can use the area under the velocity vs. time graph to calculate the displacement of an object.

Important: The area under the velocity vs. time graph gives the displacement.

The displacement of the object is given by the area under the graph, which is 0 m. This is
obvious, because the object is not moving.

11.6.2 Motion at Constant Velocity

Motion at a constant velocity or uniform motion means that the position of the object is changing
at the same rate.
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Assume that Lesedi takes 100 s to walk the 100 m to the taxi-stop every morning. If we assume
that Lesedi’s house is the origin, then Lesedi’s velocity is:

v =
∆x

∆t

=
xf − xi

tf − ti

=
100 m− 0 m

100 s− 0 s

= 1 m · s−1

Lesedi’s velocity is 1 m·s−1. This means that he walked 1 m in the first second, another metre
in the second second, and another in the third second, and so on. For example, after 50 s he
will be 50 m from home. His position increases by 1 m every 1 s. A diagram of Lesedi’s position
is shown in Figure 11.6.

b

x = 100 m
t = 0 s t = 50 s t = 100 s

x = 50 mx = 0 m

b b

v = 1m·s−1 v = 1m·s−1

Figure 11.6: Diagram showing Lesedi’s motion at a constant velocity of 1 m·s−1

We can now draw graphs of position vs.time (x vs. t), velocity vs.time (v vs. t) and acceleration
vs.time (a vs. t) for Lesedi moving at a constant velocity. The graphs are shown in Figure 11.7.
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1∆x

∆t

Figure 11.7: Graphs for motion at constant velocity (a) position vs. time (b) velocity vs. time
(c) acceleration vs. time. The area of the shaded portion in the v vs. t graph corresponds to
the object’s displacement.

In the evening Lesedi walks 100 m from the bus stop to his house in 100 s. Assume that Lesedi’s
house is the origin. The following graphs can be drawn to describe the motion.

We see that the v vs. t graph is a horisontal line. If the velocity vs. time graph is a horisontal
line, it means that the velocity is constant (not changing). Motion at a constant velocity is
known as uniform motion.
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Figure 11.8: Graphs for motion with a constant negative velocity (a) position vs. time (b)
velocity vs. time (c) acceleration vs. time. The area of the shaded portion in the v vs.t graph
corresponds to the object’s displacement.

We can use the x vs. t to calculate the velocity by finding the gradient of the line.

v =
∆x

∆t

=
xf − xi

tf − ti

=
0 m− 100 m

100 s− 0 s

= −1 m · s−1

Lesedi has a velocity of -1 m·s−1, or 1 m·s−1towards his house. You will notice that the v vs. t
graph is a horisontal line corresponding to a velocity of -1 m·s−1. The horisontal line means that
the velocity stays the same (remains constant) during the motion. This is uniform velocity.

We can use the v vs. t to calculate the acceleration by finding the gradient of the line.

a =
∆v

∆t

=
vf − vi
tf − ti

=
1 m · s−1 − 1 m · s−1

100 s− 0 s

= 0 m · s−2

Lesedi has an acceleration of 0 m·s−2. You will notice that the graph of a vs.t is a horisontal line
corresponding to an acceleration value of 0 m·s−2. There is no acceleration during the motion
because his velocity does not change.

We can use the v vs. t to calculate the displacement by finding the area under the graph.

v = Area under graph

= ℓ× b

= 100× (−1)

= −100 m

This means that Lesedi has a displacement of 100 m towards his house.

Exercise: Velocity and acceleration

1. Use the graphs in Figure 11.7 to calculate each of the following:
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(a) Calculate Lesedi’s velocity between 50 s and 100 s using the x vs. t graph.
Hint: Find the gradient of the line.

(b) Calculate Lesedi’s acceleration during the whole motion using the v vs. t
graph.

(c) Calculate Lesedi’s displacement during the whole motion using the v vs. t
graph.

2. Thandi takes 200 s to walk 100 m to the bus stop every morning. Draw a graph
of Thandi’s position as a function of time (assuming that Thandi’s home is the
reference point). Use the gradient of the x vs. t graph to draw the graph of
velocity vs. time. Use the gradient of the v vs. t graph to draw the graph of
acceleration vs. time.

3. In the evening Thandi takes 200 s to walk 100 m from the bus stop to her
home. Draw a graph of Thandi’s position as a function of time (assuming that
Thandi’s home is the origin). Use the gradient of the x vs. t graph to draw
the graph of velocity vs. time. Use the gradient of the v vs. t graph to draw
the graph of acceleration vs. time.

4. Discuss the differences between the two sets of graphs in questions 2 and 3.

Activity :: Experiment : Motion at constant velocity
Aim:
To measure the position and time during motion at constant velocity and determine
the average velocity as the gradient of a “Position vs. Time” graph.
Apparatus:
A battery operated toy car, stopwatch, meter stick or measuring tape.
Method:

1. Work with a friend. Copy the table below into your workbook.

2. Complete the table by timing the car as it travels each distance.

3. Time the car twice for each distance and take the average value as your accepted
time.

4. Use the distance and average time values to plot a graph of “Distance vs. Time”
onto graph paper. Stick the graph paper into your workbook. (Remember
that “A vs. B” always means “y vs. x”).

5. Insert all axis labels and units onto your graph.

6. Draw the best straight line through your data points.

7. Find the gradient of the straight line. This is the average velocity.

Results:

Distance (m)
Time (s)

1 2 Ave.
0
0,5
1,0
1,5
2,0
2,5
3,0

Conclusions:
Answer the following questions in your workbook.

Questions:
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1. Did the car travel with a constant velocity?

2. How can you tell by looking at the “Distance vs. Time” graph if the velocity
is constant?

3. How would the “Distance vs. Time” look for a car with a faster velocity?

4. How would the “Distance vs. Time” look for a car with a slower velocity?

11.6.3 Motion at Constant Acceleration

The final situation we will be studying is motion at constant acceleration. We know that
acceleration is the rate of change of velocity. So, if we have a constant acceleration, this
means that the velocity changes at a constant rate.

Let’s look at our first example of Lesedi waiting at the taxi stop again. A taxi arrived and Lesedi
got in. The taxi stopped at the stop street and then accelerated as follows: After 1 s the taxi
covered a distance of 2,5 m, after 2 s it covered 10 m, after 3 seconds it covered 22,5 m and
after 4 s it covered 40 m. The taxi is covering a larger distance every second. This means that
it is accelerating.

10 m 40 m2,5 m 22,5 m
t = 1 s t = 2 s t = 3 s t = 4 s

STOP

To calculate the velocity of the taxi you need to calculate the gradient of the line at each second:

v1s =
∆x

∆t

=
xf − xi

tf − ti

=
5 m− 0 m

1,5 s− 0,5 s

= 5 m · s−1

v2s =
∆x

∆t

=
xf − xi

tf − ti

=
15 m− 5 m

2,5 s− 1,5 s

= 10 m · s−1

v3s =
∆x

∆t

=
xf − xi

tf − ti

=
30 m− 15 m

3,5 s− 2,5 s

= 15 m · s−1

From these velocities, we can draw the velocity-time graph which forms a straight line.

The acceleration is the gradient of the v vs. t graph and can be calculated as follows:

a =
∆v

∆t

=
vf − vi
tf − ti

=
15m · s−1 − 5m · s−1

3 s− 1 s

= 5 m · s−2

The acceleration does not change during the motion (the gradient stays constant). This is
motion at constant or uniform acceleration.

The graphs for this situation are shown in Figure 11.9.
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Figure 11.9: Graphs for motion with a constant acceleration (a) position vs. time (b) velocity
vs. time (c) acceleration vs. time.

Velocity from Acceleration vs. Time Graphs

Just as we used velocity vs. time graphs to find displacement, we can use acceleration vs. time
graphs to find the velocity of an object at a given moment in time. We simply calculate the
area under the acceleration vs. time graph, at a given time. In the graph below, showing an
object at a constant positive acceleration, the increase in velocity of the object after 2 seconds
corresponds to the shaded portion.

v = area of rectangle = a×∆t

= 5 m · s−2 × 2 s

= 10m · s−1

The velocity of the object at t = 2 s is therefore 10 m·s−1. This corresponds with the values
obtained in Figure 11.9.

Exercise: Graphs

1. A car is parked 10 m from home for 10 minutes. Draw a displacement-time,
velocity-time and acceleration-time graphs for the motion. Label all the axes.

2. A bus travels at a constant velocity of 12 m·s−1for 6 seconds. Draw the
displacement-time, velocity-time and acceleration-time graph for the motion.
Label all the axes.

3. An athlete runs with a constant acceleration of 1 m·s−2for 4 s. Draw the
acceleration-time, velocity-time and displacement time graphs for the motion.
Accurate values are only needed for the acceleration-time and velocity-time
graphs.

4. The following velocity-time graph describes the motion of a car. Draw the
displacement-time graph and the acceleration-time graph and explain the mo-
tion of the car according to the three graphs.

6

2
0

v (m·s−1)

t (s)
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5. The following velocity-time graph describes the motion of a truck. Draw the
displacement-time graph and the acceleration-time graph and explain the mo-
tion of the truck according to the three graphs.

8

4
0

v (m·s−1)

t (s)

11.7 Summary of Graphs

The relation between graphs of position, velocity and acceleration as functions of time is sum-
marised in Figure 11.10.

Stationary
Object

x (m)

t (s)

v (m·s−1)

t (s)

a (m·s−2)

t (s)

Uniform Mo-
tion

x (m)

t (s)

v (m·s−1)

t (s)

a (m·s−2)

t (s)

Motion with
constant ac-
celeration

x (m)

t (s)

v (m·s−1)

t (s)

a (m·s−2)

t (s)

Figure 11.10: Position-time, velocity-time and acceleration-time graphs.
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Important: Often you will be required to describe the motion of an object that is presented
as a graph of either position, velocity or acceleration as functions of time. The description
of the motion represented by a graph should include the following (where possible):

1. whether the object is moving in the positive or negative direction

2. whether the object is at rest, moving at constant velocity or moving at constant
positive acceleration (speeding up) or constant negative acceleration (slowing down)

You will also often be required to draw graphs based on a description of the motion in words
or from a diagram. Remember that these are just different methods of presenting the same
information. If you keep in mind the general shapes of the graphs for the different types of
motion, there should not be any difficulty with explaining what is happening.

11.8 Worked Examples

The worked examples in this section demonstrate the types of questions that can be asked about
graphs.
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Worked Example 24: Description of motion based on a position-time
graph
Question: The position vs. time graph for the motion of a car is given
below. Draw the corresponding velocity vs. time and acceleration vs. time
graphs, and then describe the motion of the car.

0

1

2

3

4

5

0 1 2 3 4 5 6

x (m)

t (s)

Answer
Step 1 : Identify what information is given and what is asked for
The question gives a position vs. time graph and the following three things
are required:

1. Draw a v vs. t graph.

2. Draw an a vs. t graph.

3. Describe the motion of the car.

To answer these questions, break the motion up into three sections: 0 – 2
seconds, 2 – 4 seconds and 4 – 6 seconds.

Step 2 : Velocity vs. time graph for 0 – 2 seconds
For the first 2 seconds we can see that the displacement remains constant -
so the object is not moving, thus it has zero velocity during this time. We
can reach this conclusion by another path too: remember that the gradient
of a displacement vs. time graph is the velocity. For the first 2 seconds we
can see that the displacement vs. time graph is a horizontal line, ie. it has
a gradient of zero. Thus the velocity during this time is zero and the object
is stationary.

Step 3 : Velocity vs. time graph for 2 – 4 seconds
For the next 2 seconds, displacement is increasing with time so the object
is moving. Looking at the gradient of the displacement graph we can see
that it is not constant. In fact, the slope is getting steeper (the gradient
is increasing) as time goes on. Thus, remembering that the gradient of a
displacement vs. time graph is the velocity, the velocity must be increasing
with time during this phase.

Step 4 : Velocity vs. time graph for 4 – 6 seconds
For the final 2 seconds we see that displacement is still increasing with time,
but this time the gradient is constant, so we know that the object is now
travelling at a constant velocity, thus the velocity vs. time graph will be a
horizontal line during this stage. We can now draw the graphs:
So our velocity vs. time graph looks like this one below. Because we haven’t
been given any values on the vertical axis of the displacement vs. time graph,
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we cannot figure out what the exact gradients are and therefore what the
values of the velocities are. In this type of question it is just important to
show whether velocities are positive or negative, increasing, decreasing or
constant.

0 1 2 3 4 5 6

v (m·s−1)

t (s)

Once we have the velocity vs. time graph its much easier to get the
acceleration vs. time graph as we know that the gradient of a velocity vs.
time graph is the just the acceleration.

Step 5 : Acceleration vs. time graph for 0 – 2 seconds
For the first 2 seconds the velocity vs. time graph is horisontal and has a
value of zero, thus it has a gradient of zero and there is no acceleration
during this time. (This makes sense because we know from the displacement
time graph that the object is stationary during this time, so it can’t be
accelerating).

Step 6 : Acceleration vs. time graph for 2 – 4 seconds
For the next 2 seconds the velocity vs. time graph has a positive gradient.
This gradient is not changing (i.e. its constant) throughout these 2 seconds
so there must be a constant positive acceleration.

Step 7 : Acceleration vs. time graph for 4 – 6 seconds
For the final 2 seconds the object is traveling with a constant velocity. During
this time the gradient of the velocity vs. time graph is once again zero, and
thus the object is not accelerating. The acceleration vs. time graph looks
like this:

a (m·s−2)

t (s)
0 2 4 6

Step 8 : A description of the object’s motion
A brief description of the motion of the object could read something like this:
At t = 0 s and object is stationary at some position and remains stationary
until t = 2 s when it begins accelerating. It accelerates in a positive direction
for 2 seconds until t = 4 s and then travels at a constant velocity for a further
2 seconds.
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Worked Example 25: Calculations from a velocity vs. time graph
Question: The velocity vs. time graph of a truck is plotted below. Calculate
the distance and displacement of the truck after 15 seconds.

0

1

2

3

4

−1

−2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

v (m·s−1)

t (s)

Answer
Step 1 : Decide how to tackle the problem
We are asked to calculate the distance and displacement of the car. All we
need to remember here is that we can use the area between the velocity
vs. time graph and the time axis to determine the distance and displacement.

Step 2 : Determine the area under the velocity vs. time graph
Break the motion up: 0 – 5 seconds, 5 – 12 seconds, 12 – 14 seconds and
14 – 15 seconds.

For 0 – 5 seconds: The dis-
placement is equal to the area
of the triangle on the left:

Area△ =
1

2
b× h

=
1

2
× 5 s × 4m · s−1

= 10 m

For 5 – 12 seconds: The
displacement is equal to the
area of the rectangle:

Area� = ℓ× b

= 7 s × 4m · s−1

= 28 m2

For 12 – 14 seconds the dis-
placement is equal to the area
of the triangle above the time
axis on the right:

Area△ =
1

2
b× h

=
1

2
× 2 s × 4m · s−1

= 4 m

For 14 – 15 seconds the dis-
placement is equal to the area
of the triangle below the time
axis:

Area△ =
1

2
b× h

=
1

2
× 1 s × 2m · s−1

= 1 m

Step 3 : Determine the total distance of the car
Now the total distance of the car is the sum of all of these areas:

∆x = 10 m + 28 m + 4 m+ 1 m

= 43 m
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Step 4 : Determine the total displacement of the car
Now the total displacement of the car is just the sum of all of these areas.
HOWEVER, because in the last second (from t = 14 s to t = 15 s) the
velocity of the car is negative, it means that the car was going in the opposite
direction, i.e. back where it came from! So, to find the total displacement,
we have to add the first 3 areas (those with positive displacements) and
subtract the last one (because it is a displacement in the opposite direction).

∆x = 10 m + 28 m + 4 m− 1 m

= 41 m in the positive direction

Worked Example 26: Velocity from a position vs. time graph
Question: The position vs. time graph below describes the motion of an
athlete.

1. What is the velocity of the athlete during the first 4 sec-
onds?

2. What is the velocity of the athlete from t = 4 s to t = 7
s?

0

1

2

3

4

0 1 2 3 4 5 6 7

x (m)

t (s)

Answer
Step 1 : The velocity during the first 4 seconds
The velocity is given by the gradient of a position vs. time graph. During
the first 4 seconds, this is

v =
∆x

∆t

=
4 m− 0 m

4 s− 0 s

= 1 m · s−1

Step 2 : The velocity during the last 3 seconds
For the last 3 seconds we can see that the displacement stays constant.
The graph shows a horisontal line and therefore the gradient is zero. Thus
v = 0 m · s−1.
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Worked Example 27: Drawing a v vs. t graph from an a vs. t graph
Question: The acceleration vs. time graph for a car starting from rest, is
given below. Calculate the velocity of the car and hence draw the velocity
vs. time graph.

0

1

2

−1

−2

1 2 3 4 5 6

a (m·s−2)

t (s)

Answer
Step 1 : Calculate the velocity values by using the area under each
part of the graph.
The motion of the car can be divided into three time sections: 0 – 2
seconds; 2 – 4 seconds and 4 – 6 seconds. To be able to draw the velocity
vs. time graph, the velocity for each time section needs to be calculated.
The velocity is equal to the area of the square under the graph:

For 0 – 2 seconds:

Area� = ℓ× b

= 2 s × 2m · s−2

= 4 m · s−1

The velocity of the car
is 4 m·s−1 at t = 2s.

For 2 – 4 seconds:

Area� = ℓ× b

= 2 s × 0m · s−2

= 0 m · s−1

The velocity of the car
is 0 m·s−1 from t = 2
s to t = 4 s.

For 4 – 6 seconds:

Area� = ℓ× b

= 2 s ×−2m · s−2

= −4 m · s−1

The acceleration had a
negative value, which
means that the veloc-
ity is decreasing. It
starts at a velocity of
4 m·s−1 and decreases
to 0 m·s−1.

Step 2 : Now use the values to draw the velocity vs. time graph.

The velocity vs. time
graph looks like this:

0

1

2

3

4

0 1 2 3 4 5 6

v (m·s−1)

t (s)
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11.9 Equations of Motion

In this chapter we will look at the third way to describe motion. We have looked at describing
motion in terms of graphs and words. In this section we examine equations that can be used to
describe motion.

This section is about solving problems relating to uniformly accelerated motion. In other words,
motion at constant acceleration.
The following are the variables that will be used in this section:

vi = initial velocity (m·s−1) at t = 0 s

vf = final velocity (m·s−1) at time t

∆x = displacement (m)

t = time (s)

∆t = time interval (s)

a = acceleration (m·s−2)

vf = vi + at (11.1)

∆x =
(vi + vf )

2
t (11.2)

∆x = vit+
1

2
at2 (11.3)

v2f = v2i + 2a∆x (11.4)

The questions can vary a lot, but the following method for answering them will always work.
Use this when attempting a question that involves motion with constant acceleration. You need
any three known quantities (vi, vf , ∆x, t or a) to be able to calculate the fourth one.

1. Read the question carefully to identify the quantities that are given. Write them down.

2. Identify the equation to use. Write it down!!!

3. Ensure that all the values are in the correct unit and fill them in your equation.

4. Calculate the answer and fill in its unit.

Interesting

Fact

teresting

Fact
Galileo Galilei of Pisa, Italy, was the first to determined the correct mathematical
law for acceleration: the total distance covered, starting from rest, is proportional
to the square of the time. He also concluded that objects retain their velocity
unless a force – often friction – acts upon them, refuting the accepted Aristotelian
hypothesis that objects ”naturally” slow down and stop unless a force acts upon
them. This principle was incorporated into Newton’s laws of motion (1st law).

11.9.1 Finding the Equations of Motion

The following does not form part of the syllabus and can be considered additional information.
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Derivation of Equation 11.1

According to the definition of acceleration:

a =
∆v

t

where ∆v is the change in velocity, i.e. ∆v = vf - vi. Thus we have

a =
vf − vi

t
vf = vi + at

Derivation of Equation 11.2

We have seen that displacement can be calculated from the area under a velocity vs. time graph.
For uniformly accelerated motion the most complicated velocity vs. time graph we can have is
a straight line. Look at the graph below - it represents an object with a starting velocity of vi,
accelerating to a final velocity vf over a total time t.

v (m·s−1)

t (s)

vi

vf

t

To calculate the final displacement we must calculate the area under the graph - this is just
the area of the rectangle added to the area of the triangle. This portion of the graph has been
shaded for clarity.

Area△ =
1

2
b× h

=
1

2
t× (vf − vi)

=
1

2
vf t−

1

2
vit

Area� = ℓ× b

= t× vi

= vit

Displacement = Area� +Area△

∆x = vit+
1

2
vf t−

1

2
vit

∆x =
(vi + vf )

2
t
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Derivation of Equation 11.3

This equation is simply derived by eliminating the final velocity vf in equation 11.2. Remembering
from equation 11.1 that

vf = vi + at

then equation 11.2 becomes

∆x =
vi + vi + at

2
t

=
2vit+ at2

2

∆x = vit+
1

2
at2

Derivation of Equation 11.4

This equation is just derived by eliminating the time variable in the above equation. From
Equation 11.1 we know

t =
vf − vi

a

Substituting this into Equation 11.3 gives

∆x = vi(
vf − vi

a
) +

1

2
a(

vf − vi
a

)2

=
vivf
a

−
v2i
a

+
1

2
a(

v2f − 2vivf + v2i
a2

)

=
vivf
a

−
v2i
a

+
v2f
2a

−
vivf
a

+
v2i
2a

2a∆x = −2v2i + v2f + v2i

v2f = v2i + 2a∆x (11.5)

This gives us the final velocity in terms of the initial velocity, acceleration and displacement and
is independent of the time variable.

Worked Example 28: Equations of motion
Question: A racing car is travelling north. It accelerates uniformly covering
a distance of 725 m in 10 s. If it has an initial velocity of 10 m·s−1, find its
acceleration.
Answer
Step 1 : Identify what information is given and what is asked for
We are given:

vi = 10 m · s−1

∆x = 725 m

t = 10 s

a = ?

Step 2 : Find an equation of motion relating the given information
to the acceleration
If you struggle to find the correct equation, find the quantity that is not
given and then look for an equation that has this quantity in it.
We can use equation 11.3

∆x = vit+
1

2
at2
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Step 3 : Substitute your values in and find the answer

∆x = vit+
1

2
at2

725 m = (10m · s−1 × 10 s) +
1

2
a× (10 s)2

725 m− 100 m = (50 s2) a

a = 12,5 m · s−2

Step 4 : Quote the final answer
The racing car is accelerating at 12,5 m·s−2 north.
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Worked Example 29: Equations of motion
Question: A motorcycle, travelling east, starts from rest, moves in a straight
line with a constant acceleration and covers a distance of 64 m in 4 s.
Calculate

• its acceleration

• its final velocity

• at what time the motorcycle had covered half the total
distance

• what distance the motorcycle had covered in half the total
time.

Answer
Step 1 : Identify what information is given and what is asked for
We are given:

vi = 0 m · s−1(because the object starts from rest.)

∆x = 64 m

t = 4 s

a = ?

vf = ?

t = ? at half the distance ∆x = 32 m.

∆x = ? at half the time t = 2 s.

All quantities are in SI units.
Step 2 : Acceleration: Find a suitable equation to calculate the ac-
celeration
We can use equations 11.3

∆x = vit+
1

2
at2

Step 3 : Substitute the values and calculate the acceleration

∆x = vit+
1

2
at2

64 m = (0 m · s−1 × 4 s) +
1

2
a× (4 s)2

64 m = (8 s2)a

a = 8 m · s−2 east

Step 4 : Final velocity: Find a suitable equation to calculate the final
velocity
We can use equation 11.1 - remember we now also know the acceleration
of the object.

vf = vi + at

Step 5 : Substitute the values and calculate the final velocity

vf = vi + at

vf = 0 m · s−1 + (8 m · s−2)(4 s)

= 32 m · s−1 east

Step 6 : Time at half the distance: Find an equation to calculate the
time
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We can use equation 11.3:

∆x = vi +
1

2
at2

32 m = (0 m · s−1)t+
1

2
(8 m · s−2)(t)2

32 m = 0 + (4 m · s−2)t2

8 s2 = t2

t = 2,83 s

Step 7 : Distance at half the time: Find an equation to relate the
distance and time
Half the time is 2 s, thus we have vi, a and t - all in the correct units. We
can use equation 11.3 to get the distance:

∆x = vit+
1

2
at2

= (0)(2) +
1

2
(8)(2)2

= 16 m east

Exercise: Acceleration

1. A car starts off at 10 m·s−1 and accelerates at 1 m·s−2 for 10 s. What is its
final velocity?

2. A train starts from rest, and accelerates at 1 m·s−2 for 10 s. How far does it
move?

3. A bus is going 30 m·s−1 and stops in 5 s. What is its stopping distance for this
speed?

4. A racing car going at 20 m·s−1 stops in a distance of 20 m. What is its
acceleration?

5. A ball has a uniform acceleration of 4 m·s−1. Assume the ball starts from rest.
Determine the velocity and displacement at the end of 10 s.

6. A motorcycle has a uniform acceleration of 4 m·s−1. Assume the motorcycle
has an initial velocity of 20 m·s−1. Determine the velocity and displacement at
the end of 12 s.

7. An aeroplane accelerates uniformly such that it goes from rest to 144 km·hr−1in
8 s. Calculate the acceleration required and the total distance that it has
traveled in this time.

11.10 Applications in the Real-World

What we have learnt in this chapter can be directly applied to road safety. We can analyse the
relationship between speed and stopping distance. The following worked example illustrates this
application.
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Worked Example 30: Stopping distance
Question: A truck is travelling at a constant velocity of 10 m·s−1when the
driver sees a child 50 m in front of him in the road. He hits the brakes to
stop the truck. The truck accelerates at a rate of -1.25 m·s−2. His reaction
time to hit the brakes is 0,5 seconds. Will the truck hit the child?
Answer
Step 1 : Analyse the problem and identify what information is given
It is useful to draw a timeline like this one:

driver
sees

child

driver
hits

brakes

constant v negative acceleration

child
is

here

A B C
b b bb

50 m

0,5 s
v = 10 m·s−1

We need to know the following:

• What distance the driver covers before hitting the brakes.

• How long it takes the truck to stop after hitting the brakes.

• What total distance the truck covers to stop.

Step 2 : Calculate the distance AB
Before the driver hits the brakes, the truck is travelling at constant velocity.
There is no acceleration and therefore the equations of motion are not used.
To find the distance traveled, we use:

v =
d

t

10 =
d

0,5

d = 5 m

The truck covers 5 m before the driver hits the brakes.

Step 3 : Calculate the time BC
We have the following for the motion between B and C:

vi = 10m · s−1

vf = 0m · s−1

a = −1,25m · s−2

t = ?

We can use equation 11.1

vf = vi + at

0 = 10 + (−1,25)t

−10 = −1,25t

t = 8 s

Step 4 : Calculate the distance BC
For the distance we can use equation 11.2 or equation 11.3. We will use
equation 11.2:

∆x =
(vi + vf )

2
t

∆x =
10 + 0

s
(8)

∆x = 40 m190
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11.11 Summary

• A reference point is a point from where you take your measurements.

• A frame of reference is a reference point with a set of directions.

• Your position is where you are located with respect to your reference point.

• The displacement of an object is how far it is from the reference point. It is the shortest
distance between the object and the reference point. It has magnitude and direction
because it is a vector.

• The distance of an object is the length of the path travelled from the starting point to the
end point. It has magnitude only because it is a scalar.

• A vector is a physical quantity with magnitude and direction.

• A scalar is a physical quantity with magnitude only.

• Speed (s) is the distance covered (d) divided by the time taken (∆t):

s =
d

∆t

• Average velocity (v) is the displacement (∆x) divided by the time taken (∆t):

v =
∆x

∆t

• Instantaneous speed is the speed at a specific instant in time.

• Instantaneous velocity is the velocity at a specific instant in time.

• Acceleration (a) is the change in velocity (∆x) over a time interval (∆t):

a =
∆v

∆t

• The gradient of a position - time graph (x vs. t) give the velocity.

• The gradient of a velocity - time graph (v vs. t) give the acceleration.

• The area under a velocity - time graph (v vs. t) give the displacement.

• The area under an acceleration - time graph (a vs. t) gives the velocity.

• The graphs of motion are summarised in figure 11.10.

• The equations of motion are used where constant acceleration takes place:

vf = vi + at

∆x =
(vi + vf )

2
t

∆x = vit+
1

2
at2

v2f = v2i + 2a∆x
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11.12 End of Chapter Exercises: Motion in One Dimension

1. Give one word/term for the following descriptions.

(a) The shortest path from start to finish.

(b) A physical quantity with magnitude and direction.

(c) The quantity defined as a change in velocity over a time period.

(d) The point from where you take measurements.

(e) The distance covered in a time interval.

(f) The velocity at a specific instant in time.

2. Choose an item from column B that match the description in column A. Write down only
the letter next to the question number. You may use an item from column B more than
once.

Column A Column B
a. The area under a velocity - time graph gradient
b. The gradient of a velocity - time graph area
c. The area under an acceleration - time graph velocity
d. The gradient of a displacement - time graph displacement

acceleration
slope

3. Indicate whether the following statements are TRUE or FALSE. Write only ’true’ or ’false’.
If the statement is false, write down the correct statement.

(a) A scalar is the displacement of an object over a time interval.

(b) The position of an object is where it is located.

(c) The sign of the velocity of an object tells us in which direction it is travelling.

(d) The acceleration of an object is the change of its displacement over a period in time.

4. [SC 2003/11] A body accelerates uniformly from rest for t0 seconds after which it continues
with a constant velocity. Which graph is the correct representation of the body’s motion?

t

x

t0 t

x

t0 t

x

t0 t

x

t0

(a) (b) (c) (d)

5. [SC 2003/11] The velocity-time graphs of two cars are represented by P and Q as shown

0

1

2

3

4

5

6

0 1 2 3 4

P

Q

t (s)

v (m·s−1)

The difference in the distance travelled by the two cars (in m) after 4 s is . . .
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(a) 12

(b) 6

(c) 2

(d) 0

6. [IEB 2005/11 HG] The graph that follows shows how the speed of an athlete varies with
time as he sprints for 100 m.

speed (m·s−1)

time (s)

10

t 11

Which of the following equations can be used to correctly determine the time t for which
he accelerates?

(a) 100 = (10)(11)− 1
2 (10)t

(b) 100 = (10)(11) + 1
2 (10)t

(c) 100 = 10t+ 1
2 (10)t

2

(d) 100 = 1
2 (0)t+

1
2 (10)t

2

7. [SC 2002/03 HG1] In which one of the following cases will the distance covered and the
magnitude of the displacement be the same?

(a) A girl climbs a spiral staircase.

(b) An athlete completes one lap in a race.

(c) A raindrop falls in still air.

(d) A passenger in a train travels from Cape Town to Johannesburg.

8. [SC 2003/11] A car, travelling at constant velocity, passes a stationary motor cycle at a
traffic light. As the car overtakes the motorcycle, the motorcycle accelerates uniformly
from rest for 10 s. The following displacement-time graph represents the motions of both
vehicles from the traffic light onwards.

motorcycle

car

x (m)

t (s)

375
300

0 5 X 10 15

(a) Use the graph to find the magnitude of the constant velocity of the car.

(b) Use the information from the graph to show by means of calculation that the mag-
nitude of the acceleration of the motorcycle, for the first 10 s of its motion is 7,5
m·s−2.

(c) Calculate how long (in seconds) it will take the motorcycle to catch up with the car
(point X on the time axis).

(d) How far behind the motorcycle will the car be after 15 seconds?
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9. [IEB 2005/11 HG] Which of the following statements is true of a body that accelerates
uniformly?

(a) Its rate of change of position with time remains constant.

(b) Its position changes by the same amount in equal time intervals.

(c) Its velocity increases by increasing amounts in equal time intervals.

(d) Its rate of change of velocity with time remains constant.

10. [IEB 2003/11 HG1] The velocity-time graph for a car moving along a straight horizontal
road is shown below.

t (s)

v (m·s−1)

20

12

0 t

Area A

Area B

Which of the following expressions gives the magnitude of the average velocity of the car?

(a) AreaA
t

(b) AreaA + AreaB
t

(c) AreaB
t

(d) AreaA − AreaB
t

11. [SC 2002/11 SG] A car is driven at 25 m·s−1 in a municipal area. When the driver sees a
traffic officer at a speed trap, he realises he is travelling too fast. He immediately applies
the brakes of the car while still 100 m away from the speed trap.

(a) Calculate the magnitude of the minimum acceleration which the car must have to
avoid exceeding the speed limit, if the municipal speed limit is 16.6 m·s−1.

(b) Calculate the time from the instant the driver applied the brakes until he reaches the
speed trap. Assume that the car’s velocity, when reaching the trap, is 16.6 m·s−1.

12. A traffic officer is watching his speed trap equipment at the bottom of a valley. He can
see cars as they enter the valley 1 km to his left until they leave the valley 1 km to his
right. Nelson is recording the times of cars entering and leaving the valley for a school
project. Nelson notices a white Toyota enter the valley at 11:01:30 and leave the valley at
11:02:42. Afterwards, Nelson hears that the traffic officer recorded the Toyota doing 140
km·hr−1.

(a) What was the time interval (∆t) for the Toyota to travel through the valley?

(b) What was the average speed of the Toyota?

(c) Convert this speed to km·hr−1.

(d) Discuss whether the Toyota could have been travelling at 140km·hr−1 at the bottom
of the valley.

(e) Discuss the differences between the instantaneous speed (as measured by the speed
trap) and average speed (as measured by Nelson).

13. [IEB 2003/11HG] A velocity-time graph for a ball rolling along a track is shown below.
The graph has been divided up into 3 sections, A, B and C for easy reference. (Disregard
any effects of friction.)
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time (s)

velocity (m·s−1)

A B C

12105
0

-0,2

0,6

t1

(a) Use the graph to determine the following:

i. the speed 5 s after the start

ii. the distance travelled in Section A

iii. the acceleration in Section C

(b) At time t1 the velocity-time graph intersects the time axis. Use an appropriate
equation of motion to calculate the value of time t1 (in s).

(c) Sketch a displacement-time graph for the motion of the ball for these 12 s. (You do
not need to calculate the actual values of the displacement for each time interval,
but do pay attention to the general shape of this graph during each time interval.)

14. In towns and cities, the speed limit is 60 km·hr−1. The length of the average car is 3.5
m, and the width of the average car is 2 m. In order to cross the road, you need to be
able to walk further than the width of a car, before that car reaches you. To cross safely,
you should be able to walk at least 2 m further than the width of the car (4 m in total),
before the car reaches you.

(a) If your walking speed is 4 km·hr−1, what is your walking speed in m·s−1?

(b) How long does it take you to walk a distance equal to the width of the average car?

(c) What is the speed in m·s−1 of a car travelling at the speed limit in a town?

(d) How many metres does a car travelling at the speed limit travel, in the same time
that it takes you to walk a distance equal to the width of car?

(e) Why is the answer to the previous question important?

(f) If you see a car driving toward you, and it is 28 m away (the same as the length of 8
cars), is it safe to walk across the road?

(g) How far away must a car be, before you think it might be safe to cross? How many
car-lengths is this distance?

15. A bus on a straight road starts from rest at a bus stop and accelerates at 2 m·s−2 until it
reaches a speed of 20 m·s−1. Then the bus travels for 20 s at a constant speed until the
driver sees the next bus stop in the distance. The driver applies the brakes, stopping the
bus in a uniform manner in 5 s.

(a) How long does the bus take to travel from the first bus stop to the second bus stop?

(b) What is the average velocity of the bus during the trip?
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Chapter 12

Gravity and Mechanical Energy -
Grade 10

12.1 Weight

Weight is the gravitational force that the Earth exerts on any object. The weight of an objects
gives you an indication of how strongly the Earth attracts that body towards its centre. Weight
is calculated as follows:

Weight = mg

where m = mass of the object (in kg)
and g = the acceleration due to gravity (9,8 m·s−2)

For example, what is Sarah’s weight if her mass is 50 kg. Sarah’s
weight is calculated according to:

Weight = mg

= (50 kg)(9,8m · s−2)

= 490 kg · m · s−2

= 490 N

Important: Weight is sometimes abbreviated as Fg which refers to the force of gravity. Do
not use the abbreviation W for weight as it refers to ‘Work’.

Now, we have said that the value of g is approximately 9,8 m·s−2on the surface of the Earth.
The actual value varies slightly over the surface of the Earth. Each planet in our Solar System
has its own value for g. These values are listed as multiples of g on Earth in Table 12.1

Worked Example 31: Determining mass and weight on other planets
Question: Sarah’s mass on Earth is 50 kg. What is her mass and weight
on Mars?
Answer
Step 1 : Determine what information is given and what is asked
m (on Earth) = 50 kg
m (on Mars) = ?
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Planet Gravitational Acceleration
(multiples of g on Earth)

Mercury 0,376
Venus 0,903
Earth 1
Mars 0,38
Jupiter 2,34
Saturn 1,16
Uranus 1,15
Neptune 1,19
Pluto 0,066

Table 12.1: A list of the gravitational accelerations at the surfaces of each of the planets in our
solar system. Values are listed as multiples of g on Earth. Note: The ”surface” is taken to
mean the cloud tops of the gas giants (Jupiter, Saturn, Uranus and Neptune).

Weight (on Mars) = ?

Step 2 : Calculate her mass on Mars
Sarah’s mass does not change because she is still made up of the same
amount of matter. Her mass on Mars is therefore 50 kg.

Step 3 : Calculate her weight on Mars

Sarah′s weight = 50× 0,38× 9,8

= 186,2 N

12.1.1 Differences between Mass and Weight

Mass is measured in kilograms (kg) and is the amount of matter in an object. An object’s mass
does not change unless matter is added or removed from the object.

The differences between mass and weight can be summarised in the following table:

Mass Weight
1. is a measure of how much mat-
ter there is in an object.

1. is the force with which the
Earth attracts an object.

2. is measured in kilograms. 2. is measured in newtons
3. is the same on any planet. 3. is different on different planets.
4. is a scalar. 4. is a vector.

Exercise: Weight

1. A bag of sugar has a mass of 1 kg. How much does it weigh:

(a) on Earth?

(b) on Jupiter?

(c) on Pluto?

198



CHAPTER 12. GRAVITY AND MECHANICAL ENERGY - GRADE 10 12.2

2. Neil Armstrong was the first man to walk on the surface of the Moon. The
gravitational acceleration on the Moon is 1

6 of the gravitational acceleration on
Earth, and there is negligible gravitational acceleration in outer space. If Neil’s
mass was 90 kg, what was his weight:

(a) on Earth?

(b) on the Moon?

(c) in outer space?

3. A monkey has a mass of 15 kg on Earth. The monkey travels to Mars. What
is his mass and weight on Mars?

4. Determine your mass by using a bathroom scale and calculate your weight for
each planet in the Solar System, using the values given in Table 12.1

12.2 Acceleration due to Gravity

12.2.1 Gravitational Fields

A field is a region of space in which a mass experiences a force. Therefore, a gravitational field
is a region of space in which a mass experiences a gravitational force.

12.2.2 Free fall

Important: Free fall is motion in the Earth’s gravitational field when no other forces act
on the object.

Free fall is the term used to describe a special kind of motion in the Earth’s gravitational field.
Free fall is motion in the Earth’s gravitational field when no other forces act on the object. It
is basically an ideal situation, since in reality, there is always some air friction which slows down
the motion.

Activity :: Experiment : Acceleration due to Gravity
Aim: Investigating the acceleration of two different objects during free fall.
Apparatus: Tennis ball and a sheet of A4 paper.
Method:

1. Hold the tennis ball and sheet of paper (horizontally) the same distance from
the ground. Which one would strike the ground first if both were dropped?

b

2. Drop both objects and observe. Explain your observations.

3. Now crumple the paper into a ball, more or less the same size as the tennis ball.
Drop the paper and tennis ball again and observe. Explain your observations.
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4. Why do you think the two situations are different?

5. Compare the value for the acceleration due to gravity of the tennis ball to the
crumpled piece of paper.

6. Predict what will happen if an iron ball and a tennis ball of the same size are
dropped from the same height. What will the values for their acceleration due
to gravity be?

If a metal ball and tennis ball (of the same size) were dropped from the same height, both would
reach the ground at the same time. It does not matter that the one ball is heavier than the
other. The acceleration of an object due to gravity is independent of the mass of the object. It
does not matter what the mass of the object is.

The shape of the object, however, is important. The sheet of paper took much longer to reach
the ground than the tennis ball. This is because the effect of air friction on the paper was much
greater than the air friction on the tennis ball.

If we lived in a world where there was no air resistance, the A4 sheet of paper and the tennis
ball would reach the ground at the same time. This happens in outer space or in a vaccuum.

Galileo Galilei, an Italian scientist, studied the motion of objects. The following case study will
tell you more about one of his investigations.

Activity :: Case Study : Galileo Galilei
In the late sixteenth century, it was generally believed that heavier objects would

fall faster than lighter objects. The Italian scientist Galileo Galilei thought differently.
Galileo hypothesized that two objects would fall at the same rate regardless of their
mass. Legend has it that in 1590, Galileo planned out an experiment. He climbed
to the top of the Leaning Tower of Pisa and dropped several large objects to test his
theory. He wanted to show that two different objects fall at the same rate (as long
as we ignore air resistance). Galileo’s experiment proved his hypothesis correct; the
acceleration of a falling object is independent of the object’s mass.

A few decades after Galileo, Sir Isaac Newton would show that acceleration
depends upon both force and mass. While there is greater force acting on a larger
object, this force is canceled out by the object’s greater mass. Thus two objects will
fall (actually they are pulled) to the earth at exactly the same rate.

Questions: Read the case study above and answer the following questions.

1. Divide into pairs and explain Galileo’s experiment to your friend.

2. Write down an aim and a hypothesis for Galileo’s experiment.

3. Write down the result and conclusion for Galileo’s experiment.

Activity :: Research Project : Experimental Design
Design an experiment similar to the one done by Galileo to prove that the ac-

celeration due to gravity of an object is independent of the object’s mass. The
investigation must be such that you can perform it at home or at school. Bring
your apparatus to school and perform the experiment. Write it up and hand it in for
assessment.
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Activity :: Case Study : Determining the acceleration due to gravity 1
Study the set of photographs alongside showing the position of a ball being

dropped from a height at constant time intervals. The distance of the ball from the
starting point in each consecutive image is observed to be: x1 = 0 cm, x2 = 4,9 cm,
x3 = 19,6 cm, x4 = 44,1 cm, x5 = 78,4 cm and x6 = 122,5 cm. Answer the
following questions:

1. Determine the time between each picture
if the frequency of the exposures were 10
Hz.

2. Calculate the velocity, v2, of the ball be-
tween positions 1 and 3.

v2 =
x3 − x1

t3 − t1

3. Calculate the velocity, v5, of the ball be-
tween positions 4 and 6.

v5 =
x6 − x4

t6 − t4

4. Calculate the acceleration the ball between
positions 2 and 5.

a =
v5 − v2
t5 − t2

5. Compare your answer to the value for the
acceleration due to gravity (9,8 m·s−2).

t = 0 s

The acceleration due to gravity is constant. This means we can use the equations of motion
under constant acceleration that we derived in Chapter 11 (on Page 155) to describe the motion
of an object in free fall. The equations are repeated here for ease of use.

vi = initial velocity (m·s−1) at t = 0 s

vf = final velocity (m·s−1) at time t

∆x = displacement (m)

t = time (s)

∆t = time interval (s)

g = acceleration (m·s−2)

vf = vi + gt (12.1)

∆x =
(vi + vf )

2
t (12.2)

∆x = vit+
1

2
gt2 (12.3)

v2f = v2i + 2g∆x (12.4)
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Activity :: Experiment : Determining the acceleration due to gravity 2
Work in groups of at least two people.
Aim: To determine the acceleration of an object in freefall.
Apparatus: Large marble, two stopwatches, measuring tape.
Method:

1. Measure the height of a door, from the top of the door to the floor, exactly.
Write down the measurement.

2. One person must hold the marble at the top of the door. Drop the marble to
the floor at the same time as he/she starts the first stopwatch.

3. The second person watches the floor and starts his stopwatch when the marble
hits the floor.

4. The two stopwatches are stopped together and the two times substracted. The
difference in time will give the time taken for the marble to fall from the top
of the door to the floor.

5. Design a table to show the results of your experiment. Choose appropriate
headings and units.

6. Choose an appropriate equation of motion to calculate the acceleration of the
marble. Remember that the marble starts from rest and that it’s displacement
was determined in the first step.

7. Write a conclusion for your investigation.

8. Answer the following questions:

(a) Why do you think two stopwatches were used in this investigation?

(b) Compare the value for acceleration obtained in your investigation with the
value of acceleration due to gravity (9,8 m·s−2). Explain your answer.

Worked Example 32: A freely falling ball
Question: A ball is dropped from the balcony of a tall building. The balcony
is 15 m above the ground. Assuming gravitational acceleration is 9,8 m·s−2,
find:

1. the time required for the ball to hit the ground, and

2. the velocity with which it hits the ground.

Answer
Step 1 : Draw a rough sketch of the problem
It always helps to understand the problem if we draw a picture like the one
below:

balcony

ground

∆x

vf

vi g
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Step 2 : Identify what information is given and what is asked for
We have these quantities:

∆x = 15 m

vi = 0 m · s−1

g = 9,8 m · s−2

Step 3 : Choose up or down as the positive direction.
Since the ball is falling, we choose down as positive. This means that the
values for vi, ∆x and a will be positive.
Step 4 : Choose the most appropriate equation.
We can use equation 12.3 to find the time: ∆x = vit+

1
2gt

2

Step 5 : Use the equation to find t.

∆x = vit+
1

2
gt2

15 = (0)t+
1

2
(9,8)(t)2

15 = 4,9 t2

t2 = 3,0612...

t = 1,7496...

t = 1,75 s

Step 6 : Find the final velocity vf .
Using equation 12.1 to find vf :

vf = vi + gt

vf = 0 + (9,8)(1,7496...)

vf = 17,1464...

Remember to add the direction: vf = 17,15 m·s−1downwards.

By now you should have seen that free fall motion is just a special case of motion with constant
acceleration, and we use the same equations as before. The only difference is that the value for
the acceleration, a, is always equal to the value of gravitational acceleration, g. In the equations
of motion we can replace a with g.

Exercise: Gravitational Acceleration

1. A brick falls from the top of a 5 m high building. Calculate the velocity with
which the brick reaches the ground. How long does it take the brick to reach
the ground?

2. A stone is dropped from a window. It takes the stone 1,5 seconds to reach the
ground. How high above the ground is the window?

3. An apple falls from a tree from a height of 1,8 m. What is the velocity of the
apple when it reaches the ground?
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12.3 Potential Energy

The potential energy of an object is generally defined as the energy an object has because of
its position relative to other objects that it interacts with. There are different kinds of potential
energy such as gravitional potential energy, chemical potential energy, electrical potential energy,
to name a few. In this section we will be looking at gravitational potential energy.

Definition: Potential energy
Potential energy is the energy an object has due to its position or state.

Gravitational potential energy is the energy of an object due to its position above the surface of
the Earth. The symbol PE is used to refer to gravitational potential energy. You will often find
that the words potential energy are used where gravitational potential energy is meant. We can
define potential energy (or gravitational potential energy, if you like) as:

PE = mgh (12.5)

where PE = potential energy measured in joules (J)
m = mass of the object (measured in kg)
g = gravitational acceleration (9,8 m·s−2)
h = perpendicular height from the reference point (measured in m)

A suitcase, with a mass of 1 kg, is placed at the top of a 2 m high cupboard. By lifting the
suitcase against the force of gravity, we give the suitcase potential energy. This potential energy
can be calculated using equation 12.5.

If the suitcase falls off the cupboard, it will lose its potential energy. Halfway down the cupboard,
the suitcase will have lost half its potential energy and will have only 9,8 J left. At the bottom
of the cupboard the suitcase will have lost all it’s potential energy and it’s potential energy will
be equal to zero.

Objects have maximum potential energy at a maximum height and will lose their potential
energy as they fall.

PE = mgh = 1 × 9,8 × 2 = 19,6 J

PE = mgh = 1 × 9,8 × 0 = 0 J

The potential energy is a maximum.

The potential energy is a minimum.

Worked Example 33: Gravitational potential energy
Question: A brick with a mass of 1 kg is lifted to the top of a 4 m high
roof. It slips off the roof and falls to the ground. Calculate the potential
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energy of the brick at the top of the roof and on the ground once it has
fallen.
Answer
Step 1 : Analyse the question to determine what information is pro-
vided

• The mass of the brick is m = 1 kg

• The height lifted is h = 4 m

All quantities are in SI units.
Step 2 : Analyse the question to determine what is being asked

• We are asked to find the gain in potential energy of the
brick as it is lifted onto the roof.

• We also need to calculate the potential energy once the
brick is on the ground again.

Step 3 : Identify the type of potential energy involved
Since the block is being lifted we are dealing with gravitational potential
energy. To work out PE, we need to know the mass of the object and the
height lifted. As both of these are given, we just substitute them into the
equation for PE.
Step 4 : Substitute and calculate

PE = mgh

= (1)(9,8)(4)

= 39,2 J

Exercise: Gravitational Potential Energy

1. Describe the relationship between an object’s gravitational potential energy and
its:

(a) mass and

(b) height above a reference point.

2. A boy, of mass 30 kg, climbs onto the roof of their garage. The roof is 2,5 m
from the ground. He now jumps off the roof and lands on the ground.

(a) How much potential energy has the boy gained by climbing on the roof?

(b) The boy now jumps down. What is the potential energy of the boy when
he is 1 m from the ground?

(c) What is the potential energy of the boy when he lands on the ground?

3. A hiker walks up a mountain, 800 m above sea level, to spend the night at the
top in the first overnight hut. The second day he walks to the second overnight
hut, 500 m above sea level. The third day he returns to his starting point, 200
m above sea level.

(a) What is the potential energy of the hiker at the first hut (relative to sea
level)?

(b) How much potential energy has the hiker lost during the second day?

(c) How much potential energy did the hiker have when he started his journey
(relative to sea level)?

(d) How much potential energy did the hiker have at the end of his journey?
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12.4 Kinetic Energy

Definition: Kinetic Energy
Kinetic energy is the energy an object has due to its motion.

Kinetic energy is the energy an object has because of its motion. This means that any moving
object has kinetic energy. The faster it moves, the more kinetic energy it has. Kinetic energy
(KE) is therefore dependent on the velocity of the object. The mass of the object also plays a
role. A truck of 2000 kg, moving at 100 km·hr−1, will have more kinetic energy than a car of
500 kg, also moving at 100 km·hr−1. Kinetic energy is defined as:

KE =
1

2
mv2 (12.6)

Consider the 1 kg suitcase on the cupboard that was discussed earlier. When the suitcase falls, it
will gain velocity (fall faster), until it reaches the ground with a maximum velocity. The suitcase
will not have any kinetic energy when it is on top of the cupboard because it is not moving.
Once it starts to fall it will gain kinetic energy, because it gains velocity. Its kinetic energy will
increase until it is a maximum when the suitcase reaches the ground.

KE = 1
2mv2 = 0 J

KE = 1
2mv2 = 19,6 J

The kinetic energy is a minimum.

The kinetic energy is a maximum.

Worked Example 34: Calculation of Kinetic Energy
Question: A 1 kg brick falls off a 4 m high roof. It reaches the ground with
a velocity of 8,85 m·s−1. What is the kinetic energy of the brick when it
starts to fall and when it reaches the ground?
Answer
Step 1 : Analyse the question to determine what information is pro-
vided

• The mass of the rock m = 1 kg

• The velocity of the rock at the bottom vbottom = 8,85
m·s−1

These are both in the correct units so we do not have to worry about unit
conversions.
Step 2 : Analyse the question to determine what is being asked
We are asked to find the kinetic energy of the brick at the top and the
bottom. From the definition we know that to work out KE, we need to
know the mass and the velocity of the object and we are given both of these
values.
Step 3 : Calculate the kinetic energy at the top
Since the brick is not moving at the top, its kinetic energy is zero.
Step 4 : Substitute and calculate the kinetic energy
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KE =
1

2
mv2

=
1

2
(1 kg)(8,85 m · s−1)2

= 39,2 J

12.4.1 Checking units

According to the equation for kinetic energy, the unit should be kg·m2 ·s−2. We can prove that
this unit is equal to the joule, the unit for energy.

(kg)(m · s−1)2 = (kg ·m · s−2) ·m

= N · m (because Force (N) = mass (kg) × acceleration (m·s−2))

= J (Work (J) = Force (N) × distance (m))

We can do the same to prove that the unit for potential energy is equal to the joule:

(kg)(m · s−2)(m) = N · m

= J

Worked Example 35: Mixing Units & Energy Calculations
Question: A bullet, having a mass of 150 g, is shot with a muzzle velocity
of 960 m·s−1. Calculate its kinetic energy.
Answer
Step 1 : Analyse the question to determine what information is pro-
vided

• We are given the mass of the bullet m = 150 g. This is
not the unit we want mass to be in. We need to convert
to kg.

Mass in grams÷ 1000 = Mass in kg

150 g ÷ 1000 = 0,150 kg

• We are given the initial velocity with which the bullet
leaves the barrel, called the muzzle velocity, and it is v
= 960 m·s−1.

Step 2 : Analyse the question to determine what is being asked

• We are asked to find the kinetic energy.

Step 3 : Substitute and calculate
We just substitute the mass and velocity (which are known) into the equation
for kinetic energy:

KE =
1

2
mv2

=
1

2
(0,150)(960)2

= 69 120 J
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Exercise: Kinetic Energy

1. Describe the relationship between an object’s kinetic energy and its:

(a) mass and

(b) velocity

2. A stone with a mass of 100 g is thrown up into the air. It has an initial velocity
of 3 m·s−1. Calculate its kinetic energy

(a) as it leaves the thrower’s hand.

(b) when it reaches its turning point.

3. A car with a mass of 700 kg is travelling at a constant velocity of 100 km·hr−1.
Calculate the kinetic energy of the car.

12.5 Mechanical Energy

Important: Mechanical energy is the sum of the gravitational potential energy and the
kinetic energy.

Mechanical energy, U , is simply the sum of gravitational potential energy (PE) and the kinetic
energy (KE). Mechanical energy is defined as:

U = PE +KE (12.7)

U = PE +KE

U = mgh+
1

2
mv2 (12.8)

12.5.1 Conservation of Mechanical Energy

The Law of Conservation of Energy states:

Energy cannot be created or destroyed, but is merely changed from one form into
another.

Definition: Conservation of Energy
The Law of Conservation of Energy: Energy cannot be created or destroyed, but is merely
changed from one form into another.

So far we have looked at two types of energy: gravitational potential energy and kinetic energy.
The sum of the gravitational potential energy and kinetic energy is called the mechanical energy.
In a closed system, one where there are no external forces acting, the mechanical energy will
remain constant. In other words, it will not change (become more or less). This is called the
Law of Conservation of Mechanical Energy and it states:
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The total amount of mechanical energy in a closed system remains constant.

Definition: Conservation of Mechanical Energy
Law of Conservation of Mechanical Energy: The total amount of mechanical energy in a
closed system remains constant.

This means that potential energy can become kinetic energy, or vise versa, but energy cannot
’dissappear’. The mechanical energy of an object moving in the Earth’s gravitational field (or
accelerating as a result of gravity) is constant or conserved, unless external forces, like air
resistance, acts on the object.

We can now use the conservation of mechanical energy to calculate the velocity of a body in
freefall and show that the velocity is independent of mass.

Important: In problems involving the use of conservation of energy, the path taken by
the object can be ignored. The only important quantities are the object’s velocity (which
gives its kinetic energy) and height above the reference point (which gives its gravitational
potential energy).

Important: In the absence of friction, mechanical energy is conserved and

Ubefore = Uafter

In the presence of friction, mechanical energy is not conserved. The mechanical energy lost
is equal to the work done against friction.

∆U = Ubefore − Uafter = work done against friction

In general, mechanical energy is conserved in the absence of external forces. Examples of external
forces are: applied forces, frictional forces and air resistance.

In the presence of internal forces like the force due to gravity or the force in a spring, mechanical
energy is conserved.

12.5.2 Using the Law of Conservation of Energy

Mechanical energy is conserved (in the absence of friction). Therefore we can say that the sum
of the PE and the KE anywhere during the motion must be equal to the sum of the PE and
the KE anywhere else in the motion.

We can now apply this to the example of the suitcase on the cupboard. Consider the mechanical
energy of the suitcase at the top and at the bottom. We can say:

Utop = Ubottom

PEtop +KEtop = PEbottom +KEbottom

mgh+
1

2
mv2 = mgh+

1

2
mv2

(1)(9,8)(2) + 0 = 0 +
1

2
(1)(v2)

19,6 J =
1

2
v2

39,2 = v2

v = 6,26m · s−1
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The mechanical energy (U) at the top.

The mechanical energy will remain
constant throughout the motion.

The mechanical energy (U) at the bottom.

The suitcase will strike the ground with a velocity of 6,26 m·s−1.

From this we see that when an object is lifted, like the suitcase in our example, it gains potential
energy. As it falls back to the ground, it will lose this potential energy, but gain kinetic en-
ergy. We know that energy cannot be created or destroyed, but only changed from one form into
another. In our example, the potential energy that the suitcase loses is changed to kinetic energy.

The suitcase will have maximum potential energy at the top of the cupboard and maximum
kinetic energy at the bottom of the cupboard. Halfway down it will have half kinetic energy and
half potential energy. As it moves down, the potential energy will be converted (changed) into
kinetic energy until all the potential energy is gone and only kinetic energy is left. The 19,6 J of
potential energy at the top will become 19,6 J of kinetic energy at the bottom.

Worked Example 36: Using the Law of Conservation of Mechanical
Energy
Question: During a flood a tree truck of mass 100 kg falls down a waterfall.
The waterfall is 5 m high. If air resistance is ignored, calculate

1. the potential energy of the tree trunk at the top of the
waterfall.

2. the kinetic energy of the tree trunk at the bottom of the
waterfall.

3. the magnitude of the velocity of the tree trunk at the bot-
tom of the waterfall.

5 m

m = 100 kg

waterfall

Answer
Step 1 : Analyse the question to determine what information is pro-
vided

• The mass of the tree trunk m = 100 kg

• The height of the waterfall h = 5 m.
These are all in SI units so we do not have to convert.

Step 2 : Analyse the question to determine what is being asked

• Potential energy at the top
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• Kinetic energy at the bottom

• Velocity at the bottom

Step 3 : Calculate the potential energy.

PE = mgh

PE = (100)(9,8)(5)

PE = 4900 J

Step 4 : Calculate the kinetic energy.
The kinetic energy of the tree trunk at the bottom of the waterfall is equal
to the potential energy it had at the top of the waterfall. Therefore KE =
4900 J.

Step 5 : Calculate the velocity.
To calculate the velocity of the tree trunk we need to use the equation for
kinetic energy.

KE =
1

2
mv2

4900 =
1

2
(100)(v2)

98 = v2

v = 9,899...

v = 9,90m · s−1downwards

Worked Example 37: Pendulum
Question: A 2 kg metal ball is suspended from a rope. If it is released from
point A and swings down to the point B (the bottom of its arc):

1. Show that the velocity of the ball is independent of it mass.

2. Calculate the velocity of the ball at point B.

A

B

0.5m

Answer
Step 1 : Analyse the question to determine what information is pro-
vided

• The mass of the metal ball is m = 2 kg

• The change in height going from point A to point B is h
= 0,5 m

• The ball is released from point A so the velocity at point,
vA = 0 m·s−1.
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All quantities are in SI units.

Step 2 : Analyse the question to determine what is being asked

• Prove that the velocity is independent of mass.

• Find the velocity of the metal ball at point B.

Step 3 : Apply the Law of Conservation of Mechanical Energy to the
situation
As there is no friction, mechanical energy is conserved. Therefore:

UA = UB

PEA +KEA = PEB +KEB

mghA +
1

2
m(vA)

2 = mghB +
1

2
m(vB)

2

mghA + 0 = 0 +
1

2
m(vB)

2

mghA =
1

2
m(vB)

2

As the mass of the ball m appears on both sides of the equation, it can be
eliminated so that the equation becomes:

ghA =
1

2
(vB)

2

2ghA = (vB)
2

This proves that the velocity of the ball is independent of its mass. It does
not matter what its mass is, it will always have the same velocity when it
falls through this height.
Step 4 : Calculate the velocity of the ball
We can use the equation above, or do the calculation from ’first principles’:

(vB)
2 = 2ghA

(vB)
2 = (2)(9.8)(0,5)

(vB)
2 = 9,8

vB =
√

9,8 m · s−1

Exercise: Potential Energy

1. A tennis ball, of mass 120 g, is dropped from a height of 5 m. Ignore air
friction.

(a) What is the potential energy of the ball when it has fallen 3 m?

(b) What is the velocity of the ball when it hits the ground?

2. A bullet, mass 50 g, is shot vertically up in the air with a muzzle velocity of 200
m·s−1. Use the Principle of Conservation of Mechanical Energy to determine
the height that the bullet will reach. Ignore air friction.

3. A skier, mass 50 kg, is at the top of a 6,4 m ski slope.

(a) Determine the maximum velocity that she can reach when she skies to the
bottom of the slope.

(b) Do you think that she will reach this velocity? Why/Why not?
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4. A pendulum bob of mass 1,5 kg, swings from a height A to the bottom of its
arc at B. The velocity of the bob at B is 4 m·s−1. Calculate the height A from
which the bob was released. Ignore the effects of air friction.

5. Prove that the velocity of an object, in free fall, in a closed system, is indepen-
dent of its mass.

12.6 Energy graphs

Let us consider our example of the suitcase on the cupboard, once more.

The kinetic energy is zero at the top.

The kinetic energy is a maximum at the bottom

The mechanical energy will remain
constant throughout the motion.

The potential energy is a maximum at the top.

The potential energy is zero at the bottom.

Let’s look at each of these quantities and draw a graph for each. We will look at how each
quantity changes as the suitcase falls from the top to the bottom of the cupboard.

• Potential energy: The potential energy starts off at a maximum and decreases until it
reaches zero at the bottom of the cupboard. It had fallen a distance of 2 metres.

PE (J)

20

19,6

distance (m)

• Kinetic energy: The kinetic energy is zero at the start of the fall. When the suitcase
reaches the ground, the kinetic energy is a maximum. We also use distance on the x-axis.

KE (J)

20

19,6

distance (m)

• Mechanical energy: The mechanical energy is constant throughout the motion and is
always a maximum. At any point in time, when we add the potential energy and the
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kinetic energy, we will get the same number.

U (J)

20

19,6

distance (m)

12.7 Summary

• Mass is the amount of matter an object is made up of.

• Weight is the force with which the Earth attracts a body towards its centre.

• A body is in free fall if it is moving in the Earth’s gravitational field and no other forces
act on it.

• The equations of motion can be used for free fall problems. The acceleration (a) is equal
to the acceleration due to gravity (g).

• The potential energy of an object is the energy the object has due to his position above a
reference point.

• The kinetic energy of an object is the energy the object has due to its motion.

• Mechanical energy of an object is the sum of the potential energy and kinetic energy of
the object.

• The unit for energy is the joule (J).

• The Law of Conservation of Energy states that energy cannot be created or destroyed, but
can only be changed from one form into another.

• The Law of Conservation of Mechanical Energy states that the total mechanical energy of
an isolated system remains constant.

• The table below summarises the most important equations:

Weight Fg = m · g
Equation of motion vf = vi + gt

Equation of motion ∆x =
(vi+vf )

2 t
Equation of motion ∆x = vit+

1
2gt

2

Equation of motion v2f = v2i + 2g∆x

Potential Energy PE = mgh
Kinetic Energy KE = 1

2mv2

Mechanical Energy U = KE + PE

12.8 End of Chapter Exercises: Gravity and Mechanical En-

ergy

1. Give one word/term for the following descriptions.

(a) The force with which the Earth attracts a body.

(b) The unit for energy.

(c) The movement of a body in the Earth’s gravitational field when no other forces act
on it.

(d) The sum of the potential and kinetic energy of a body.

214



CHAPTER 12. GRAVITY AND MECHANICAL ENERGY - GRADE 10 12.8

(e) The amount of matter an object is made up of.

2. Consider the situation where an apple falls from a tree. Indicate whether the following
statements regarding this situation are TRUE or FALSE. Write only ’true’ or ’false’. If the
statement is false, write down the correct statement.

(a) The potential energy of the apple is a maximum when the apple lands on the ground.

(b) The kinetic energy remains constant throughout the motion.

(c) To calculate the potential energy of the apple we need the mass of the apple and the
height of the tree.

(d) The mechanical energy is a maximum only at the beginning of the motion.

(e) The apple falls at an acceleration of 9,8 m·s−2.

3. [IEB 2005/11 HG] Consider a ball dropped from a height of 1 m on Earth and an identical
ball dropped from 1 m on the Moon. Assume both balls fall freely. The acceleration due
to gravity on the Moon is one sixth that on Earth. In what way do the following compare
when the ball is dropped on Earth and on the Moon.

Mass Weight Increase in kinetic energy
(a) the same the same the same
(b) the same greater on Earth greater on Earth
(c) the same greater on Earth the same
(d) greater on Earth greater on Earth greater on Earth

4. A man fires a rock out of a slingshot directly upward. The rock has an initial velocity of
15 m·s−1.

(a) How long will it take for the rock to reach its highest point?

(b) What is the maximum height that the rock will reach?

(c) Draw graphs to show how the potential energy, kinetic energy and mechanical energy
of the rock changes as it moves to its highest point.

5. A metal ball of mass 200 g is tied to a light string to make a pendulum. The ball is pulled
to the side to a height (A), 10 cm above the lowest point of the swing (B). Air friction
and the mass of the string can be ignored. The ball is let go to swing freely.

(a) Calculate the potential energy of the ball at point A.

(b) Calculate the kinetic energy of the ball at point B.

(c) What is the maximum velocity that the ball will reach during its motion?

6. A truck of mass 1,2 tons is parked at the top of a hill, 150 m high. The truck driver lets
the truck run freely down the hill to the bottom.

(a) What is the maximum velocity that the truck can achieve at the bottom of the hill?

(b) Will the truck achieve this velocity? Why/why not?

7. A stone is dropped from a window, 3 metres above the ground. The mass of the stone is
25 grams.

(a) Use the Equations of Motion to calculate the velocity of the stone as it reaches the
ground.

(b) Use the Principle of Conservation of Energy to prove that your answer in (a) is correct.
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Chapter 13

Transverse Pulses - Grade 10

13.1 Introduction

This chapter forms the basis of the discussion into mechanical waves. Waves are all around us,
even though most of us are not aware of it. The most common waves are waves in the sea, but
waves can be created in any container of water, ranging from an ocean to a tea-cup. Waves do
not only occur in water, they occur in any kind of medium. Earthquakes generate waves that
travel through the rock of the Earth. When your friend speaks to you he produces sound waves
that travel through the air to your ears. Light is made up of electromagnetic waves. A wave is
simply moving energy.

13.2 What is a medium?

In this chapter, as well as in the following chapters, we will speak about waves moving in a
medium. A medium is just the substance or material through which waves move. In other words
the medium carries the wave from one place to another. The medium does not create the wave
and the medium is not the wave. Therefore the medium does not travel with the wave as the
wave propagates through it. Air is a medium for sound waves, water is a medium for water waves
and rock is a medium for earthquakes (which are also a type of wave). Air, water and rock are
therefore examples of media (media is the plural of medium).

Definition: Medium
A medium is the substance or material in which a wave will move.

In each medium, the atoms that make up the medium are moved temporarily from their rest
position. In order for a wave to travel, the different parts of the medium must be able to interact
with each other.

13.3 What is a pulse?

Activity :: Investigation : Observation of Pulses
Take a heavy rope. Have two people hold the rope stretched out horizontally.

Flick the rope at one end only once.

flick rope upwards at one end, once only
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What happens to the disturbance that you created in the rope? Does it stay at the
place where it was created or does it move down the length of the rope?

In the activity, we created a pulse. A pulse is a single disturbance that moves through a medium.
In a transverse pulse the displacement of the medium is perpendicular to the direction of motion
of the pulse. Figure 13.1 shows an example of a transverse pulse. In the activity, the rope or
spring was held horizontally and the pulse moved the rope up and down. This was an example
of a transverse pulse.

Definition: Pulse
A pulse is a single disturbance that moves through a medium.

13.3.1 Pulse Length and Amplitude

The amplitude of a pulse is a measurement of how far the medium is displaced momentarily
from a position of rest. The pulse length is a measurement of how long the pulse is. Both these
quantities are shown in Figure 13.1.

Definition: Amplitude
The amplitude of a pulse is a measurement of how far the medium is displaced from rest.

amplitude

pulse length
position of rest

Figure 13.1: Example of a transverse pulse

Activity :: Investigation : Pulse Length and Amplitude
The graphs below show the positions of a pulse at different times.

a

p
a

p
a

p
a

p

t=0 s

t=1 s

t=2 s

t=3 s

Use your ruler to measure the lengths of a and p. Fill your answers in the table.
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Time a p
t = 0 s
t = 1 s
t = 2 s
t = 3 s

What do you notice about the values of a and p?

In the activity, we found that the values for how high the pulse (a) is and how wide the pulse
(p) is the same at different times. Pulse length and amplitude are two important quantities of
a pulse.

13.3.2 Pulse Speed

Definition: Pulse Speed
Pulse speed is the distance a pulse travels per unit time.

In Chapter 11 we saw that speed was defined as the distance travelled per unit time. We can use
the same definition of speed to calculate how fast a pulse travels. If the pulse travels a distance
d in a time t, then the pulse speed v is:

v =
d

t

Worked Example 38: Pulse Speed
Question: A pulse covers a distance of 2 m in 4 s on a heavy rope. Calculate
the pulse speed.
Answer
Step 1 : Determine what is given and what is required
We are given:

• the distance travelled by the pulse: d = 2 m

• the time taken to travel 2 m: t = 4 s

We are required to calculate the speed of the pulse.
Step 2 : Determine how to approach the problem
We can use:

v =
d

t

to calculate the speed of the pulse.
Step 3 : Calculate the pulse speed

v =
d

t

=
2m

4 s

= 0,5m · s−1

Step 4 : Write the final answer
The pulse speed is 0,5 m·s−1.
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Important: The pulse speed depends on the properties of the medium and not on the
amplitude or pulse length of the pulse.

Exercise: Pulse Speed

1. A pulse covers a distance of 5 m in 15 seconds. Calculate the speed of the
pulse.

2. A pulse has a speed of 5 cm.s−1. How far does it travel in 2,5 seconds?

3. A pulse has a speed of 0,5 m·s−1. How long does it take to cover a distance
of 25 cm?

4. How long will it take a pulse moving at 0,25 m·s−1 to travel a distance of 20 m?

5. The diagram shows two pulses in the
same medium. Which has the higher
speed? Explain your answer.

A

B

6. Ocean waves do not bring more water onto the shore until the beach is com-
pletely submerged. Explain why this is so.

13.4 Graphs of Position and Velocity

When a pulse moves through a medium, there are two different motions: the motion of the
particles of the medium and the motion of the pulse. These two motions are at right angles to
each other when the pulse is transverse. Each motion will be discussed.

Consider the situation shown in Figure 13.3. The dot represents one particle of the medium. We
see that as the pulse moves to the right the particle only moves up and down.

13.4.1 Motion of a Particle of the Medium

First we consider the motion of a particle of the medium when a pulse moves through the
medium. For the explanation we will zoom into the medium so that we are looking at the atoms
of the medium. These atoms are connected to each other as shown in Figure 13.2.

b b b b b b b b b

Figure 13.2: Particles in a medium.

When a pulse moves through the medium, the particles in the medium only move up and down.
We can see this in Figure 13.3 which shows the motion of a single particle as a pulse moves
through the medium.

Important: A particle in the medium only moves up and down when a transverse pulse
moves through the medium. The pulse moves from left to right (or right to left). The
motion of the particle is perpendicular to the motion of a transverse pulse.
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t=0 s

t=1 s

t=2 s

t=3 s

t=4 s

t=5 s

t=6 s

t=7 s

t=8 s

t=9 s

b

b

b

b

b

b

b

b

b

b

pulse

Figure 13.3: Positions of a pulse in a rope at different times. The pulse moves to the right as
shown by the arrow. You can also see the motion of a point in the medium through which the
pulse is travelling. Each block is 1 cm.

If you consider the motion of the particle as a function of time, you can draw a graph of position
vs. time and velocity vs. time.

Activity :: Investigation : Drawing a position-time graph

1. Study Figure 13.3 and complete the following table:

time (s) 0 1 2 3 4 5 6 7 8 9
position (cm)

2. Use your table to draw a graph of position vs. time for a particle in a medium.

The position vs. time graph for a particle in a medium when a pulse passes through the medium
is shown in Figure 13.4

Activity :: Investigation : Drawing a velocity-time graph

1. Study Figure 13.4 and complete the following table:

time (s) 0 1 2 3 4 5 6 7 8 9
velocity (cm.s−1)

2. Use your table to draw a graph of velocity vs time for a particle in a medium.

221



13.4 CHAPTER 13. TRANSVERSE PULSES - GRADE 10

b

b

b

b

b b

b

b

b

b0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
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P
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Figure 13.4: Position against Time graph of a particle in the medium through which a transverse
pulse is travelling.

The velocity vs. time graph far a particle in a medium when a pulse passes through the medium
is shown in Figure 13.5.

0
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b
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Figure 13.5: Velocity against Time graph of a particle in the medium through which a transverse
pulse is travelling.

13.4.2 Motion of the Pulse

The motion of the pulse is much simpler than the motion of a particle in the medium.

Important: A point on a transverse pulse, eg. the peak, only moves in the direction of the
motion of the pulse.

Worked Example 39: Transverse pulse through a medium
Question:
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b

b

b

b

b

b

b

b

b

b

t=0 s

t=1 s

t=2 s

t=3 s

t=4 s

t=5 s

t=6 s

t=7 s

t=8 s

t=9 s

pulse

Figure 13.6: Position of the peak of a pulse at different times (since we
know the shape of the pulse does not change we can look at only one point
on the pulse to keep track of its position, the peak for example). The pulse
moves to the right as shown by the arrow. Each square is 0,5 cm.

Given the series of snapshots of a transverse pulse moving through a medium,
depicted in Figure 13.6, do the following:

• draw up a table of time, position and velocity,

• plot a position vs. time graph,

• plot a velocity vs. time graph.

Answer
Step 1 : Interpreting the figure
Figure 13.6 shows the motion of a pulse through a medium and a dot to
indicate the same position on the pulse. If we follow the dot, we can draw
a graph of position vs time for a pulse. At t = 0 s the dot is at 0cm. At t
= 1 s the dot is 1 cm away from its original postion. At t = 2 s the dot is
2 cm away from its original postion, and so on.
Step 2 : We can draw the following table:

time (s) 0 1 2 3 4 5 6 7 8 9
position (cm) 0 1 2 3 4 5 6 7 8 9

velocity (cm.s−1) 1 1 1 1 1 1 1 1 1 1

Step 3 : A graph of position vs time is drawn as is shown in the figure.
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Step 4 : Similarly, a graph of velocity vs time is drawn and is shown
in the figure below.

0
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b b b b b b b b b

Exercise: Travelling Pulse

1. A pulse is passed through a rope and the following pictures were obtained for
each time interval:
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0 1 2 3 4 5 6 7

0

1

2

t=0 s

t=0.25 s

t=0.50 s

t=0.75 s

t=1.00 s

t=1.25 s

t=1.50 s

t=1.75 s

t=2.00 s

pulse

(cm)

(cm)

(a) Complete the following table for a particle in the medium:

time (s) 0,00 0,25 0,50 0,75 1,00 1,25 1,50 1,75 2,00
position (mm)

velocity (mm.s−1)

(b) Draw a position vs. time graph for the motion of the particle at 3 cm.

(c) Draw a velocity vs. time graph for the motion of the particle at 3 cm.

(d) Draw a position vs. time graph for the motion of the pulse through the
rope.

(e) Draw a velocity vs. time graph for the motion of the pulse through the
rope.
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13.5 Transmission and Reflection of a Pulse at a Boundary

What happens when a pulse travelling in one medium finds that medium is joined to another?

Activity :: Investigation : Two ropes

Find two different ropes and tie both ropes together. Hold the joined ropes
horizontally and create a pulse by flicking the rope up and down. What happens to
the pulse when it encounters the join?

When a pulse is transmitted from one medium to another, like from a thin rope to a thicker one,
the nature of the pulse will change where it meets the boundary of the two media (i.e. where
the two ropes are joined). Part of the pulse will be reflected and part of it will be transmitted.
Figure 13.7 shows the general case of a pulse meeting a boundary. The incident pulse is the
one that arrives at the boundary. The reflected pulse is the one that moves back, away from
the boundary. The transmitted pulse is the one that moves into the new medium, away from
the boundary. The speed of the pulse depends on the mass of the rope; the pulse is faster in
the thinner rope and slower in the thick rope. When the speed of the pulse increases, the pulse
length will increase. If the speed decreases, the pulse length will decrease.

pulse approaches second medium

pulse at boundary of second medium

pulse reflected and transmitted at boundary

pulses move away from each other

Figure 13.7: Reflection and transmission of a pulse at the boundary between two media.

Consider a pulse moving from a thin rope to a thick rope. As the pulse crosses the boundary, the
speed of the pulse will decrease as it moves into the thicker rope. The pulse will move slower,
so the pulse length will decrease. The pulse will be reflected and inverted in the thin rope. The
reflected pulse will have the same length and speed but will have a smaller amplitude. This is
illustrated in Figure 13.8.
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2 cm 1 cm

2 cm

Figure 13.8: Reflection and transmission of a pulse at the boundary between two media.

When a pulse moves from a thick rope to a thin rope, the opposite will happen. As the pulse
crosses the boundary, the speed of the pulse will increase as it moves into the thinner rope.
The pulse in the thin rope will move faster, so the pulse length will increase. The pulse will be
reflected but not inverted in the thick rope. The reflected pulse will have the same length and
speed but will have a smaller amplitude. This is illustrated in Figure 13.9

1 cm 2 cm1 cm

Figure 13.9: Reflection and transmission of a pulse at the boundary between two media.

Exercise: Pulses at a Boundary I

1. Fill in the blanks or select the correct answer: A pulse in a heavy rope is
traveling towards the boundary with a thin piece of string.

(a) The reflected pulse in the heavy rope will/will not be inverted because
.

(b) The speed of the transmitted pulse will be greater than/less than/the
same as the speed of the incident pulse.

(c) The speed of the reflected pulse will be greater than/less than/the same
as the speed of the incident pulse.

(d) The pulse length of the transmitted pulse will be greater than/less than/the
same as the pulse length of the incident pulse.

(e) The frequency of the transmitted pulse will be greater than/less than/the
same as the frequency of the incident pulse.

2. A pulse in a light string is traveling towards the boundary with a heavy rope.

(a) The reflected pulse in the light rope will/will not be inverted because
.

(b) The speed of the transmitted pulse will be greater than/less than/the
same as the speed of the incident pulse.

(c) The speed of the reflected pulse will be greater than/less than/the same
as the speed of the incident pulse.

(d) The pulse length of the transmitted pulse will be greater than/less than/the
same as the pulse length of the incident pulse.
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13.6 Reflection of a Pulse from Fixed and Free Ends

Let us now consider what happens to a pulse when it reaches the end of a medium. The medium
can be fixed, like a rope tied to a wall, or it can be free, like a rope tied loosely to a pole.

13.6.1 Reflection of a Pulse from a Fixed End

Activity :: Investigation : Reflection of a Pulse from a Fixed End
Tie a rope to a wall or some other object that cannot move. Create a pulse in

the rope by flicking one end up and down. Observe what happens to the pulse when
it reaches the wall.

wall wall
pulse at wall

wall

pulse reflected

Figure 13.10: Reflection of a pulse from a fixed end.

When the end of the medium is fixed, for example a rope tied to a wall, a pulse reflects from
the fixed end, but the pulse is inverted (i.e. it is upside-down). This is shown in Figure 13.10.

13.6.2 Reflection of a Pulse from a Free End

Activity :: Investigation : Reflection of a Pulse from a Free End
Tie a rope to a pole in such a way that the rope can move up and down the pole.

Create a pulse in the rope by flicking one end up and down. Observe what happens
to the pulse when it reaches the pole.

When the end of the medium is free, for example a rope tied loosely to a pole, a pulse reflects
from the free end, but the pulse is not inverted. This is shown in Figure 13.11. We draw the
free end as a ring around the pole. The ring will move up and down the pole, while the pulse is
reflected away from the pole.

pole pole
pulse at pole

pole
pulse reflected

Figure 13.11: Reflection of a pulse from a free end.
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Important: The fixed and free ends that were discussed in this section are examples of
boundary conditions. You will see more of boundary conditions as you progress in the
Physics syllabus.

Exercise: Pulses at a Boundary II

1. A rope is tied to a tree and a single pulse is generated. What happens to the
pulse as it reaches the tree? Draw a diagram to explain what happens.

2. A rope is tied to a ring that is loosely fitted around a pole. A single pulse is
sent along the rope. What will happen to the pulse as it reaches the pole?
Draw a diagram to explain your answer.

13.7 Superposition of Pulses

Two or more pulses can pass through the same medium at that same time. The resulting pulse
is obtained by using the principle of superposition. The principle of superposition states that the
effect of the pulses is the sum of their individual effects. After pulses pass through each other,
each pulse continues along its original direction of travel, and their original amplitudes remain
unchanged.

Constructive interference takes place when two pulses meet each other to create a larger pulse.
The amplitude of the resulting pulse is the sum of the amplitudes of the two initial pulses. This
is shown in Figure 13.12.

Definition: Constructive interference is when two pulses meet, resulting in a bigger
pulse.

pulses move towards each other

pulses constructively interfere

pulses move away from other

Figure 13.12: Superposition of two pulses: constructive interference.

Destructive interference takes place when two pulses meet and cancel each other. The amplitude
of the resulting pulse is the sum of the amplitudes of the two initial pulses, but the one amplitude
will be a negative number. This is shown in Figure 13.13. In general, amplitudes of individual
pulses add together to give the amplitude of the resultant pulse.

Definition: Destructive interference is when two pulses meet, resulting in a smaller
pulse.
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pulses move towards each other

pulses destructively interfere

pulses move away from other

pulses move towards each other

pulses interfere

pulses move away from other

Figure 13.13: Superposition of two pulses. The left-hand series of images demonstrates destruc-
tive interference, since the pulses cancel each other. The right-hand series of images demonstrate
a partial cancelation of two pulses, as their amplitudes are not the same in magnitude.

Worked Example 40: Superposition of Pulses
Question: The two pulses shown below approach each other at 1 m·s−1.
Draw what the waveform would look like after 1 s, 2 s and 5 s.

0

1

2

0 1 2 3 4 5 6 7 8

am
p
lit
u
d
e
(m

)

distance (m)

A B

Answer
Step 1 : After 1 s
After 1 s, pulse A has moved 1 m to the right and pulse B has moved 1 m
to the left.

0

1

2

0 1 2 3 4 5 6 7 8

am
p
lit
u
d
e
(m

)

distance (m)

A B

Step 2 : After 2 s
After 1 s more, pulse A has moved 1 m to the right and pulse B has moved
1 m to the left.
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0

1

2

0 1 2 3 4 5 6 7 8
am

p
lit
u
d
e
(m

)

distance (m)

A+B

Step 3 : After 5 s
After 5 s more, pulse A has moved 5 m to the right and pulse B has moved
5 m to the left.

0

1

2

0 1 2 3 4 5 6 7 8

am
p
lit
u
d
e
(m

)

distance (m)

AB

Important: The idea of superposition is one that occurs often in physics. You will see
much, much more of superposition!

Exercise: Superposition of Pulses

1. For each of the following pulses, draw the resulting wave forms after 1 s, 2 s,
3 s, 4 s and 5 s. Each pulse is travelling at 1 m·s−1. Each block represents
1 m. The pulses are shown as thick black lines and the undisplaced medium as
dashed lines.

(a)

t=0 s

(b)

t=0 s

(c)

t=0 s
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(d)

t=0 s

(e)

t=0 s

(f)

t=0 s

2. (a) What is superposition of waves?

(b) What is constructive interference? Use the letter “c” to indicate where
constructive interference took place in each of your answers for question
1. Only look at diagrams for t = 3 s.

(c) What is destructive interference? Use the letter “d” to indicate where
destructive interference took place in each of your answers for question 1.
Only look at diagrams for t = 2 s.

13.8 Exercises - Transverse Pulses

1. A heavy rope is flicked upwards, creating a single pulse in the rope. Make a drawing of
the rope and indicate the following in your drawing:

(a) The direction of motion of the pulse

(b) Amplitude

(c) Pulse length

(d) Position of rest

2. A pulse has a speed of 2,5m.s−1. How far will it have travelled in 6s?

3. A pulse covers a distance of 75cm in 2,5s. What is the speed of the pulse?

4. How long does it take a pulse to cover a distance of 200mm if its speed is 4m.s−1?

5. The following position-time graph for a pulse in a slinky spring is given. Draw an accurate
sketch graph of the velocity of the pulse against time.

4

8

time (s)

position ∆x
(m)

6. The following velocity-time graph for a particle in a medium is given. Draw an accurate
sketch graph of the position of the particle vs. time.
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5

4

time (s)

velocity v

(m.s−1)

3

2

7. Describe what happens to a pulse in a slinky spring when:

(a) the slinky spring is tied to a wall.

(b) the slinky spring is loose, i.e. not tied to a wall.

(Draw diagrams to explain your answers.)

8. The following diagrams each show two approaching pulses. Redraw the diagrams to show
what type of interference takes place, and label the type of interference.

(a)
1

3

(b)

3

2

9. Two pulses, A and B, of identical shape and amplitude are simultaneously generated in
two identical wires of equal mass and length. Wire A is, however, pulled tighter than wire
B. Which pulse will arrive at the other end first, or will they both arrive at the same time?
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Chapter 14

Transverse Waves - Grade 10

14.1 Introduction

Waves occur frequently in nature. The most obvious examples are waves in water, on a dam, in
the ocean, or in a bucket. We are most interested in the properties that waves have. All waves
have the same properties, so if we study waves in water, then we can transfer our knowledge to
predict how other examples of waves will behave.

14.2 What is a transverse wave?

We have studied pulses in Chapter 13, and know that a pulse is a single disturbance that travels
through a medium. A wave is a periodic, continuous disturbance that consists of a train of
pulses.

Definition: Wave
A wave is a periodic, continuous disturbance that consists of a train of pulses.

Definition: Transverse wave
A transverse wave is a wave where the movement of the particles of the medium is perpen-
dicular to the direction of propagation of the wave.

Activity :: Investigation : Transverse Waves
Take a rope or slinky spring. Have two people hold the rope or spring stretched

out horizontally. Flick the one end of the rope up and down continuously to create
a train of pulses.

Flick rope up and down

1. Describe what happens to the rope.

2. Draw a diagram of what the rope looks like while the pulses travel along it.
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3. In which direction do the pulses travel?

4. Tie a ribbon to the middle of the rope. This indicates a particle in the rope.

Flick rope up and down

5. Flick the rope continuously. Watch the ribbon carefully as the pulses travel
through the rope. What happens to the ribbon?

6. Draw a picture to show the motion of the ribbon. Draw the ribbon as a dot
and use arrows to indicate how it moves.

In the Activity, you have created waves. The medium through which these waves propagated
was the rope, which is obviously made up of a very large number of particles (atoms). From the
activity, you would have noticed that the wave travelled from left to right, but the particles (the
ribbon) moved only up and down.

p
ar
ti
cl
e
m
ot
io
n

wave motion

Figure 14.1: A transverse wave, showing the direction of motion of the wave perpendicular to
the direction in which the particles move.

When the particles of a medium move at right angles to the direction of propagation of a wave,
the wave is called transverse. For waves, there is no net displacement of the particles (they
return to their equilibrium position), but there is a net displacement of the wave. There are thus
two different motions: the motion of the particles of the medium and the motion of the wave.

14.2.1 Peaks and Troughs

Waves have moving peaks (or crests) and troughs. A peak is the highest point the medium rises
to and a trough is the lowest point the medium sinks to.

Peaks and troughs on a transverse wave are shown in Figure 14.2.

equilibrium

Peaks

Troughs

Figure 14.2: Peaks and troughs in a transverse wave.

Definition: Peaks and troughs
A peak is a point on the wave where the displacement of the medium is at a maximum.
A point on the wave is a trough if the displacement of the medium at that point is at a
minimum.
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14.2.2 Amplitude and Wavelength

There are a few properties that we saw with pulses that also apply to waves. These are amplitude
and wavelength (we called this pulse length).

Definition: Amplitude
The amplitude is the maximum displacement of a particle from its equilibrium position.

Activity :: Investigation : Amplitude

equilibrium

a

b

c

d

e

f

equilibrium

Fill in the table below by measuring the distance between the equilibrium and
each peak and troughs in the wave above. Use your ruler to measure the distances.

Peak/Trough Measurement (cm)
a
b
c
d
e
f

1. What can you say about your results?

2. Are the distances between the equilibrium position and each peak equal?

3. Are the distances between the equilibrium position and each trough equal?

4. Is the distance between the equilibrium position and peak equal to the distance
between equilibrium and trough?

As we have seen in the activity on amplitude, the distance between the peak and the equilibrium
position is equal to the distance between the trough and the equilibrium position. This distance
is known as the amplitude of the wave, and is the characteristic height of wave, above or below
the equilibrium position. Normally the symbol A is used to represent the amplitude of a wave.
The SI unit of amplitude is the metre (m).

Amplitude

Amplitude

2 x Amplitude
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Worked Example 41: Amplitude of Sea Waves
Question: If the peak of a wave measures 2m above the still water mark in
the harbour, what is the amplitude of the wave?
Answer
The definition of the amplitude is the height of a peak above the equilibrium
position. The still water mark is the height of the water at equilibrium and
the peak is 2 m above this, so the amplitude is 2m.

Activity :: Investigation : Wavelength

a b

c d

equilibrium

Fill in the table below by measuring the distance between peaks and troughs in
the wave above.

Distance(cm)
a
b
c
d

1. What can you say about your results?

2. Are the distances between peaks equal?

3. Are the distances between troughs equal?

4. Is the distance between peaks equal to the distance between troughs?

As we have seen in the activity on wavelength, the distance between two adjacent peaks is the
same no matter which two adjacent peaks you choose. There is a fixed distance between the
peaks. Similarly, we have seen that there is a fixed distance between the troughs, no matter
which two troughs you look at. More importantly, the distance between two adjacent peaks is
the same as the distance between two adjacent troughs. This distance is called the wavelength
of the wave.

The symbol for the wavelength is λ (the Greek letter lambda) and wavelength is measured in
metres (m).

λ

λ
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Worked Example 42: Wavelength
Question: The total distance between 4 consecutive peaks of a transverse
wave is 6m. What is the wavelength of the wave?
Answer
Step 1 : Draw a rough sketch of the situation6m

equilibrium

λ λ λ

Step 2 : Determine how to approach the problem
From the sketch we see that 4 consecutive peaks is equivalent to 3 wave-
lengths.
Step 3 : Solve the problem
Therefore, the wavelength of the wave is:

3λ = 6m

λ =
6m

3
= 2m

14.2.3 Points in Phase

Activity :: Investigation : Points in Phase
Fill in the table by measuring the distance between the indicated points.

bA

bB

bC
b
D

bE bF

bG

bH
b
I

b

J

Points Distance (cm)

A to F
B to G
C to H
D to I
E to J
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What do you find?

In the activity the distance between the indicated points was the same. These points are then
said to be in phase. Two points in phase are separate by an integer (0,1,2,3,...) number of
complete wave cycles. They do not have to be peaks or troughs, but they must be separated by
a complete number of wavelengths.

We then have an alternate definition of the wavelength as the distance between any two adjacent
points which are in phase.

Definition: Wavelength of wave
The wavelength of a wave is the distance between any two adjacent points that are in phase.

λ

λ

λ

λ

Points that are not in phase, those that are not separated by a complete number of wavelengths,
are called out of phase. Examples of points like these would be A and C, or D and E, or B and
H in the Activity.

14.2.4 Period and Frequency

Imagine you are sitting next to a pond and you watch the waves going past you. First one peak
arrives, then a trough, and then another peak. Suppose you measure the time taken between
one peak arriving and then the next. This time will be the same for any two successive peaks
passing you. We call this time the period, and it is a characteristic of the wave.

The symbol T is used to represent the period. The period is measured in seconds (s).

Definition: The period (T) is the time taken for two successive peaks (or troughs)
to pass a fixed point.

Imagine the pond again. Just as a peak passes you, you start your stopwatch and count each
peak going past. After 1 second you stop the clock and stop counting. The number of peaks
that you have counted in the 1 second is the frequency of the wave.

Definition: The frequency is the number of successive peaks (or troughs) passing a
given point in 1 second.

The frequency and the period are related to each other. As the period is the time taken for
1 peak to pass, then the number of peaks passing the point in 1 second is 1

T
. But this is the

frequency. So

f =
1

T

or alternatively,

T =
1

f
.
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For example, if the time between two consecutive peaks passing a fixed point is 1
2 s, then the

period of the wave is 1
2 s. Therefore, the frequency of the wave is:

f =
1

T

=
1
1
2 s

= 2 s−1

The unit of frequency is the Hertz (Hz) or s−1.

Worked Example 43: Period and Frequency
Question: What is the period of a wave of frequency 10Hz?
Answer
Step 1 : Determine what is given and what is required
We are required to calculate the period of a 10Hz wave.
Step 2 : Determine how to approach the problem
We know that:

T =
1

f

Step 3 : Solve the problem

T =
1

f

=
1

10Hz
= 0,1 s

Step 4 : Write the answer
The period of a 10Hz wave is 0,1 s.

14.2.5 Speed of a Transverse Wave

In Chapter 11, we saw that speed was defined as

speed =
distance travelled

time taken
.

The distance between two successive peaks is 1 wavelength, λ. Thus in a time of 1 period, the
wave will travel 1 wavelength in distance. Thus the speed of the wave, v, is:

v =
distance travelled

time taken
=

λ

T
.

However, f = 1
T
. Therefore, we can also write:

v =
λ

T

= λ ·
1

T
= λ · f

We call this equation the wave equation. To summarise, we have that v = λ · f where

• v= speed in m·s−1
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• λ= wavelength in m

• f = frequency in Hz

Worked Example 44: Speed of a Transverse Wave 1
Question: When a particular string is vibrated at a frequency of 10Hz, a
transverse wave of wavelength 0,25m is produced. Determine the speed of
the wave as it travels along the string.
Answer
Step 1 : Determine what is given and what is required

• frequency of wave: f = 10Hz

• wavelength of wave: λ = 0,25m

We are required to calculate the speed of the wave as it travels along the
string. All quantities are in SI units.
Step 2 : Determine how to approach the problem
We know that the speed of a wave is:

v = f · λ

and we are given all the necessary quantities.
Step 3 : Substituting in the values

v = f · λ

= (10 Hz)(0,25m)

= 2,5m · s−1

Step 4 : Write the final answer
The wave travels at 2,5m·s−1 along the string.

Worked Example 45: Speed of a Transverse Wave 2
Question: A cork on the surface of a swimming pool bobs up and down
once every second on some ripples. The ripples have a wavelength of 20 cm.
If the cork is 2m from the edge of the pool, how long does it take a ripple
passing the cork to reach the edge?
Answer
Step 1 : Determine what is given and what is required
We are given:

• frequency of wave: f = 1Hz

• wavelength of wave: λ = 20 cm

• distance of cork from edge of pool: d = 2m

We are required to determine the time it takes for a ripple to travel between
the cork and the edge of the pool.
The wavelength is not in SI units and should be converted.
Step 2 : Determine how to approach the problem
The time taken for the ripple to reach the edge of the pool is obtained from:

t =
d

v
(from v =

d

t
)
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We know that
v = f · λ

Therefore,

t =
d

f · λ

Step 3 : Convert wavelength to SI units

20 cm = 0,2m

Step 4 : Solve the problem

t =
d

f · λ

=
2m

(1 Hz)(0,2m)

= 10 s

Step 5 : Write the final answer
A ripple passing the leaf will take 10 s to reach the edge of the pool.

Exercise: Waves

1. When the particles of a medium move perpendicular to the direction of the
wave motion, the wave is called a . . . . . . . . . wave.

2. A transverse wave is moving downwards. In what direction do the particles in
the medium move?

3. Consider the diagram below and answer the questions that follow:

A

B

C D

(a) the wavelength of the wave is shown by letter . . . . . ..

(b) the amplitude of the wave is shown by letter . . . . . ..

4. Draw 2 wavelengths of the following transverse waves on the same graph paper.
Label all important values.

(a) Wave 1: Amplitude = 1 cm, wavelength = 3 cm

(b) Wave 2: Peak to trough distance (vertical) = 3 cm, peak to peak distance
(horizontal) = 5 cm

5. You are given the transverse wave below.

0

1

−1

1 2 3 4

Draw the following:

(a) A wave with twice the amplitude of the given wave.
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(b) A wave with half the amplitude of the given wave.

(c) A wave travelling at the same speed with twice the frequency of the given
wave.

(d) A wave travelling at the same speed with half the frequency of the given
wave.

(e) A wave with twice the wavelength of the given wave.

(f) A wave with half the wavelength of the given wave.

(g) A wave travelling at the same speed with twice the period of the given
wave.

(h) A wave travelling at the same speed with half the period of the given wave.

6. A transverse wave travelling at the same speed with an amplitude of 5 cm has a
frequency of 15Hz. The horizontal distance from a crest to the nearest trough
is measured to be 2,5 cm. Find the

(a) period of the wave.

(b) speed of the wave.

7. A fly flaps its wings back and forth 200 times each second. Calculate the period
of a wing flap.

8. As the period of a wave increases, the frequency increases/decreases/does
not change.

9. Calculate the frequency of rotation of the second hand on a clock.

10. Microwave ovens produce radiation with a frequency of 2 450MHz (1MHz =
106 Hz) and a wavelength of 0,122m. What is the wave speed of the radiation?

11. Study the following diagram and answer the questions:

bA

bB
b
C

b D

b E

bF
b

G

b H

bI

bJ
b
K

b L

b M

bN
b

O

b P

b Q

(a) Identify two sets of points that are in phase.

(b) Identify two sets of points that are out of phase.

(c) Identify any two points that would indicate a wavelength.

12. Tom is fishing from a pier and notices that four wave crests pass by in 8 s and
estimates the distance between two successive crests is 4m. The timing starts
with the first crest and ends with the fourth. Calculate the speed of the wave.
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14.3 Graphs of Particle Motion

In Chapter 13, we saw that when a pulse moves through a medium, there are two different
motions: the motion of the particles of the medium and the motion of the pulse. These two
motions are at right angles to each other when the pulse is transverse. Since a transverse wave
is a series of transverse pulses, the particle in the medium and the wave move in exactly the
same way as for the pulse.

When a transverse wave moves horizontally through the medium, the particles in the medium
only move up and down. We can see this in the figure below, which shows the motion of a
single particle as a transverse wave moves through the medium.

direction of motion of the wave

bt = 0 s

b
t = 20 s

b

t = 40 s

b

t = 60 s

b

t = 80 s

b

t = 100 s

b

t = 120 s

b

t = 140 s

Important: A particle in the medium only moves up and down when a transverse wave
moves horizontally through the medium.

As in Chapter 11, we can draw a graph of the particles’ position as a function of time. For the
wave shown in the above figure, we can draw the graph shown below.

t

y

Graph of particle position as a function of time.
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The graph of the particle’s velocity as a function of time is obtained by taking the gradient of
the position vs. time graph. The graph of velocity vs. time for the position vs. time graph
above, is shown in the graph below.

t

vy

Graph of particle velocity as a function of time.

The graph of the particle’s acceleration as a function of time is obtained by taking the gradient
of the velocity vs. time graph. The graph of acceleration vs. time for the position vs. time
graph shown above, is shown below.

t

ay

Graph of particle acceleration as a function of time.

As for motion in one dimension, these graphs can be used to describe the motion of the particle
in the medium. This is illustrated in the worked examples below.

Worked Example 46: Graphs of particle motion 1
Question: The following graph shows the position of a particle of a wave
as a function of time.

b

b

b

b

b t

y

A

B

C

D

E

1. Draw the corresponding velocity vs. time graph for the
particle.

2. Draw the corresponding acceleration vs. time graph for
the particle.

Answer

Step 1 : Determine what is given and what is required.

The y vs. t graph is given.
The vy vs. t and ay vs. t graphs are required.

Step 2 : Draw the velocity vs. time graph

To find the velocity of the particle we need to find the
gradient of the y vs. t graph at each time.
At point A the gradient is a maximum and positive.
At point B the gradient is zero.

246



CHAPTER 14. TRANSVERSE WAVES - GRADE 10 14.3

At point C the gradient is a maximum, but negative.
At point D the gradient is zero.
At point E the gradient is a maximum and positive again.

b

b

b

b

b

t

y

A

B

C

D

E

Step 3 : Draw the acceleration vs. time graph

To find the acceleration of the particle we need to find the
gradient of the vy vs. t graph at each time.
At point A the gradient is zero.
At point B the gradient is negative and a maximum.
At point C the gradient is zero.
At point D the gradient is positive and a maximum.
At point E the gradient is zero.

b

b

b

b

b t

y

A

B

C

D

E

Extension: Mathematical Description of Waves
If you look carefully at the pictures of waves you will notice that they look very
much like sine or cosine functions. This is correct. Waves can be described by
trigonometric functions that are functions of time or of position. Depending on
which case we are dealing with the function will be a function of t or x. For example,
a function of position would be:

y(x) = A sin
(

360◦
x

λ
+ φ

)

where A is the amplitude, λ the wavelength and φ is a phase shift. The phase
shift accounts for the fact that the wave at x = 0 does not start at the equilibrium
position. A function of time would be:

y(t) = A sin

(

360◦
t

T
+ φ

)

where T is the period of the wave. Descriptions of the wave incorporate the ampli-
tude, wavelength, frequency or period and a phase shift.

Exercise: Graphs of Particle Motion
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1. The following velocity vs. time graph for a particle in a wave is given.

0

1

2

−1

−2

1 2 3 4

b

b

b

b

vy

t

(a) Draw the corresponding position vs. time graph for the particle.

(b) Draw the corresponding acceleration vs. time graph for the particle.

14.4 Standing Waves and Boundary Conditions

14.4.1 Reflection of a Transverse Wave from a Fixed End

We have seen that when a pulse meets a fixed endpoint, the pulse is reflected, but it is inverted.
Since a transverse wave is a series of pulses, a transverse wave meeting a fixed endpoint is also
reflected and the reflected wave is inverted. That means that the peaks and troughs are swapped
around.

wall wall

reflected wave

Figure 14.3: Reflection of a transverse wave from a fixed end.

14.4.2 Reflection of a Transverse Wave from a Free End

If transverse waves are reflected from an end, which is free to move, the waves sent down the
string are reflected but do not suffer a phase shift as shown in Figure 14.4.

pole pole
reflected wave

Figure 14.4: Reflection of a transverse wave from a free end.
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14.4.3 Standing Waves

What happens when a reflected transverse wave meets an incident transverse wave? When two
waves move in opposite directions, through each other, interference takes place. If the two waves
have the same frequency and wavelength then standing waves are generated.

Standing waves are so-called because they appear to be standing still.

Activity :: Investigation : Creating Standing Waves
Tie a rope to a fixed object such that the tied end does not move. Continuously

move the free end up and down to generate firstly transverse waves and later standing
waves.

We can now look closely how standing waves are formed. Figure 14.5 shows a reflected wave
meeting an incident wave.

Figure 14.5: A reflected wave (solid line) approaches the incident wave (dashed line).

When they touch, both waves have an amplitude of zero:

Figure 14.6: A reflected wave (solid line) meets the incident wave (dashed line).

If we wait for a short time the ends of the two waves move past each other and the waves
overlap. To find the resultant wave, we add the two together.

Figure 14.7: A reflected wave (solid line) overlaps slightly with the incident wave (dashed line).

In this picture, we show the two waves as dotted lines and the sum of the two in the overlap
region is shown as a solid line:
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The important thing to note in this case is that there are some points where the two waves
always destructively interfere to zero. If we let the two waves move a little further we get the
picture below:

Again we have to add the two waves together in the overlap region to see what the sum of the
waves looks like.

In this case the two waves have moved half a cycle past each other but because they are
completely out of phase they cancel out completely.

When the waves have moved past each other so that they are overlapping for a large region
the situation looks like a wave oscillating in place. The following sequence of diagrams show
what the resulting wave will look like. To make it clearer, the arrows at the top of the picture
show peaks where maximum positive constructive interference is taking place. The arrows at
the bottom of the picture show places where maximum negative interference is taking place.

As time goes by the peaks become smaller and the troughs become shallower but they do not
move.

For an instant the entire region will look completely flat.

The various points continue their motion in the same manner.
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Eventually the picture looks like the complete reflection through the x-axis of what we started
with:

Then all the points begin to move back. Each point on the line is oscillating up and down with
a different amplitude.

If we look at the overall result, we get a standing wave.

Figure 14.8: A standing wave

If we superimpose the two cases where the peaks were at a maximum and the case where the
same waves were at a minimum we can see the lines that the points oscillate between. We call
this the envelope of the standing wave as it contains all the oscillations of the individual points.
To make the concept of the envelope clearer let us draw arrows describing the motion of points
along the line.

Every point in the medium containing a standing wave oscillates up and down and the amplitude
of the oscillations depends on the location of the point. It is convenient to draw the envelope
for the oscillations to describe the motion. We cannot draw the up and down arrows for every
single point!

Interesting

Fact

teresting

Fact
Standing waves can be a problem in for example indoor concerts where the
dimensions of the concert venue coincide with particular wavelengths. Standing
waves can appear as ‘feedback’, which would occur if the standing wave was
picked up by the microphones on stage and amplified.
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14.4.4 Nodes and Anti-nodes

A node is a point on a wave where no displacement takes place at any time. In a standing wave,
a node is a place where two waves cancel out completely as the two waves destructively interfere
in the same place. A fixed end of a rope is a node. An anti-node is a point on a wave where
maximum displacement takes place. In a standing wave, an anti-node is a place where the two
waves constructively interfere. Anti-nodes occur midway between nodes. A free end of a rope is
an anti-node.

Anti-nodes

Nodes

Definition: Node
A node is a point on a standing wave where no displacement takes place at any time. A
fixed end of a rope is a node.

Definition: Anti-Node
An anti-node is a point on standing a wave where maximum displacement takes place. A
free end of a rope is an anti-node.

Important: The distance between two anti-nodes is only 1
2λ because it is the distance

from a peak to a trough in one of the waves forming the standing wave. It is the same as
the distance between two adjacent nodes. This will be important when we work out the
allowed wavelengths in tubes later. We can take this further because half-way between any
two anti-nodes is a node. Then the distance from the node to the anti-node is half the
distance between two anti-nodes. This is half of half a wavelength which is one quarter of
a wavelength, 1

4λ.

14.4.5 Wavelengths of Standing Waves with Fixed and Free Ends

There are many applications which make use of the properties of waves and the use of fixed and
free ends. Most musical instruments rely on the basic picture that we have presented to create
specific sounds, either through standing pressure waves or standing vibratory waves in strings.

The key is to understand that a standing wave must be created in the medium that is oscillating.
There are restrictions as to what wavelengths can form standing waves in a medium.

For example, if we consider a rope that can move in a pipe such that it can have

• both ends free to move (Case 1)

• one end free and one end fixed (Case 2)

• both ends fixed (Case 3).

Each of these cases is slightly different because the free or fixed end determines whether a node or
anti-node will form when a standing wave is created in the rope. These are the main restrictions
when we determine the wavelengths of potential standing waves. These restrictions are known
as boundary conditions and must be met.
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In the diagram below you can see the three different cases. It is possible to create standing
waves with different frequencies and wavelengths as long as the end criteria are met.

Case 1

L

Case 2

L

Case 3

L

The longer the wavelength the less the number of anti-nodes in the standing waves. We cannot
have a standing wave with no anti-nodes because then there would be no oscillations. We use n
to number the anti-nodes. If all of the tubes have a length L and we know the end constraints
we can find the wavelength, λ, for a specific number of anti-nodes.

One Node

Let’s work out the longest wavelength we can have in each tube, i.e. the case for n = 1.

n = 1

λ = 2L λ = 4L

Case 1: In the first tube, both ends must be anti-nodes, so we must place one node in the
middle of the tube. We know the distance from one anti-node to another is 1

2λ and we also
know this distance is L. So we can equate the two and solve for the wavelength:

1

2
λ = L

λ = 2L

Case 2: In the second tube, one end must be a node and the other must be an anti-node. Since
we are looking at the case with one node, we are forced to have it at the end. We know the
distance from one node to another is 1

2λ but we only have half this distance contained in the
tube. So :

1

2

(

1

2
λ

)

= L

λ = 4L

Case 3: Here both ends are closed and so we must have two nodes so it is impossible to construct
a case with only one node.

Two Nodes

Next we determine which wavelengths could be formed if we had two nodes. Remember that we
are dividing the tube up into smaller and smaller segments by having more nodes so we expect
the wavelengths to get shorter.

n = 2

λ = L λ = 4
3L λ = 2L

Case 1: Both ends are open and so they must be anti-nodes. We can have two nodes inside
the tube only if we have one anti-node contained inside the tube and one on each end. This
means we have 3 anti-nodes in the tube. The distance between any two anti-nodes is half
a wavelength. This means there is half wavelength between the left side and the middle and
another half wavelength between the middle and the right side so there must be one wavelength
inside the tube. The safest thing to do is work out how many half wavelengths there are and
equate this to the length of the tube L and then solve for λ.
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2(
1

2
λ) = L

λ = L

Case 2: We want to have two nodes inside the tube. The left end must be a node and the right
end must be an anti-node. We can have one node inside the tube as drawn above. Again we can
count the number of distances between adjacent nodes or anti-nodes. If we start from the left
end we have one half wavelength between the end and the node inside the tube. The distance
from the node inside the tube to the right end which is an anti-node is half of the distance to
another node. So it is half of half a wavelength. Together these add up to the length of the
tube:

1

2
λ+

1

2
(
1

2
λ) = L

2

4
λ+

1

4
λ = L

3

4
λ = L

λ =
4

3
L

Case 3: In this case both ends have to be nodes. This means that the length of the tube is one
half wavelength: So we can equate the two and solve for the wavelength:

1

2
λ = L

λ = 2L

Important: If you ever calculate a longer wavelength for more nodes you have made a
mistake. Remember to check if your answers make sense!

Three Nodes

To see the complete pattern for all cases we need to check what the next step for case 3 is when
we have an additional node. Below is the diagram for the case where n = 3.

n = 3

λ = 2
3L λ = 4

5L λ = L

Case 1: Both ends are open and so they must be anti-nodes. We can have three nodes inside
the tube only if we have two anti-nodes contained inside the tube and one on each end. This
means we have 4 anti-nodes in the tube. The distance between any two anti-nodes is half a
wavelength. This means there is half wavelength between every adjacent pair of anti-nodes.
We count how many gaps there are between adjacent anti-nodes to determine how many half
wavelengths there are and equate this to the length of the tube L and then solve for λ.

3(
1

2
λ) = L

λ =
2

3
L

Case 2: We want to have three nodes inside the tube. The left end must be a node and the
right end must be an anti-node, so there will be two nodes between the ends of the tube. Again
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we can count the number of distances between adjacent nodes or anti-nodes, together these add
up to the length of the tube. Remember that the distance between the node and an adjacent
anti-node is only half the distance between adjacent nodes. So starting from the left end we
count 3 nodes, so 2 half wavelength intervals and then only a node to anti-node distance:

2(
1

2
λ) +

1

2
(
1

2
λ) = L

λ+
1

4
λ = L

5

4
λ = L

λ =
4

5
L

Case 3: In this case both ends have to be nodes. With one node in between there are two
sets of adjacent nodes. This means that the length of the tube consists of two half wavelength
sections:

2(
1

2
λ) = L

λ = L

14.4.6 Superposition and Interference

If two waves meet interesting things can happen. Waves are basically collective motion of
particles. So when two waves meet they both try to impose their collective motion on the
particles. This can have quite different results.

If two identical (same wavelength, amplitude and frequency) waves are both trying to form a
peak then they are able to achieve the sum of their efforts. The resulting motion will be a peak
which has a height which is the sum of the heights of the two waves. If two waves are both
trying to form a trough in the same place then a deeper trough is formed, the depth of which is
the sum of the depths of the two waves. Now in this case, the two waves have been trying to
do the same thing, and so add together constructively. This is called constructive interference.

A=0,5m

+

B=1,0m

=

A+B=1,5m

If one wave is trying to form a peak and the other is trying to form a trough, then they are
competing to do different things. In this case, they can cancel out. The amplitude of the
resulting wave will depend on the amplitudes of the two waves that are interfering. If the depth
of the trough is the same as the height of the peak nothing will happen. If the height of the
peak is bigger than the depth of the trough, a smaller peak will appear. And if the trough is
deeper then a less deep trough will appear. This is destructive interference.
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A=0,5m

+

B=1,0m

=
B-A=0,5m

Exercise: Superposition and Interference

1. For each labelled point, indicate whether constructive or destructive interference
takes place at that point.

A B C D E F G H I

Position Constructive/Destructive
A
B
C
D
E
F
G
H
I

2. A ride at the local amusement park is called ”Standing on Standing Waves”.
Which position (a node or an antinode) on the ride would give the greatest
thrill?

3. How many nodes and how many anti-nodes appear in the standing wave below?

4. For a standing wave on a string, you are given three statements:

A you can have any λ and any f as long as the relationship, v = λ · f is
satisfied.

B only certain wavelengths and frequencies are allowed

C the wave velocity is only dependent on the medium

Which of the statements are true:

(a) A and C only

(b) B and C only

(c) A, B, and C

(d) none of the above

5. Consider the diagram below of a standing wave on a string 9m long that is
tied at both ends. The wave velocity in the string is 16m·s−1. What is the
wavelength?
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14.5 Summary

1. A wave is formed when a continuous number of pulses are transmitted through a medium.

2. A peak is the highest point a particle in the medium rises to.

3. A trough is the lowest point a particle in the medium sinks to.

4. In a transverse wave, the particles move perpendicular to the motion of the wave.

5. The amplitude is the maximum distance from equilibrium position to a peak (or trough),
or the maximum displacement of a particle in a wave from its position of rest.

6. The wavelength (λ) is the distance between any two adjacent points on a wave that are
in phase. It is measured in metres.

7. The period (T ) of a wave is the time it takes a wavelength to pass a fixed point. It is
measured in seconds (s).

8. The frequency (f) of a wave is how many waves pass a point in a second. It is measured
in hertz (Hz) or s−1.

9. Frequency: f = 1
T

10. Period: T = 1
f

11. Speed: v = fλ or v = λ
T
.

12. When a wave is reflected from a fixed end, the resulting wave will move back through the
medium, but will be inverted. When a wave is reflected from a free end, the waves are
reflected, but not inverted.

14.6 Exercises

1. A standing wave is formed when:

(a) a wave refracts due to changes in the properties of the medium

(b) a wave reflects off a canyon wall and is heard shortly after it is formed

(c) a wave refracts and reflects due to changes in the medium

(d) two identical waves moving different directions along the same medium interfere

2. How many nodes and anti-nodes are shown in the diagram?

3. Draw a transverse wave that is reflected from a fixed end.

4. Draw a transverse wave that is reflected from a free end.
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5. A wave travels along a string at a speed of 1,5m·s−1. If the frequency of the source of
the wave is 7,5 Hz, calculate:

(a) the wavelength of the wave

(b) the period of the wave
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Chapter 15

Geometrical Optics - Grade 10

15.1 Introduction

You are indoors on a sunny day. A beam of sunlight through a window lights up a section of
the floor. How would you draw this sunbeam? You might draw a series of parallel lines showing
the path of the sunlight from the window to the floor. This is not exactly accurate – no matter
how hard you look, you will not find unique lines of light in the sunbeam! However, this is a
good way to draw light. It is also a good way to model light geometrically, as we will see in this
chapter.

These narrow, imaginary lines of light are called light rays. Since light is an electromagnetic
wave, you could think of a light ray as the path of a point on the crest of a wave. Or, you could
think of a light ray as the path taken by a miniscule particle that carries light. We will always
draw them the same way: as straight lines between objects, images, and optical devices.

We can use light rays to model mirrors, lenses, telescopes, microscopes, and prisms. The study
of how light interacts with materials is optics. When dealing with light rays, we are usually
interested in the shape of a material and the angles at which light rays hit it. From these angles,
we can work out, for example, the distance between an object and its reflection. We therefore
refer to this kind of optics as geometrical optics.

15.2 Light Rays

In physics we use the idea of a light ray to indicate the direction that light travels. Light rays
are lines with arrows and are used to show the path that light travels. In Figure 15.1, the light
rays from the object enters the eye and the eye sees the object.

The most important thing to remember is that we can only see an object when light from the
object enters our eyes. The object must be a source of light (for example a light bulb) or else it
must reflect light from a source (for example the moon), and the reflected light enters our eyes.

Important: We cannot see an object unless light from that object enters our eyes.

Definition: Light ray
Light rays are straight lines with arrows to show the path of light.

Important: Light rays are not an exact description of a general source of light. They are
merely used to show the path that light travels.
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Figure 15.1: We can only see an object when light from that object enters our eyes. We draw
light as lines with arrows to show the direction the light travels. When the light travels from the
object to the eye, the eye can see the object. Light rays entering the eye from the cart are shown
as dashed lines. The second wheel of the cart will be invisible as no straight, unobstructed lines
exist between it and the eye.

Activity :: Investigation : Light travels in straight lines
Apparatus:
You will need a candle, matches and three sheets of paper.
Method:

1. Make a small hole in the middle of each of the three sheets of paper.

2. Light the candle.

3. Look at the burning candle through the hole in the first sheet of paper.

4. Place the second sheet of paper between you and the candle so that you can
still see the candle through the holes.

5. Now do the same with the third sheet so that you can still see the candle. The
sheets of paper must not touch each other.

Figure 15.2: Light travels in straight lines

6. What do you notice about the holes in the paper?

Conclusions:
In the investigation you will notice that the holes in the paper need to be in a straight
line. This shows that light travels in a straight line. We cannot see around corners.
This also proves that light does not bend around a corner, but travels straight.

Activity :: Investigation : Light travels in straight lines

260



CHAPTER 15. GEOMETRICAL OPTICS - GRADE 10 15.2

On a sunny day, stand outside and look at something in the distance, for example
a tree, a flower or a car. From what we have learnt, we can see the tree, flower or
car because light from the object is entering our eye. Now take a sheet of paper and
hold it about 20 cm in front of your face. Can you still see the tree, flower or car?
Why not?

Figure 15.3 shows that a sheet of paper in front of your eye prevents light rays from reaching
your eye.

sheet of paper

Figure 15.3: The sheet of paper prevents the light rays from reaching the eye, and the eye cannot
see the object.

15.2.1 Shadows

Objects cast shadows when light shines on them. This is more evidence that light travels in
straight lines. The picture below shows how shadows are formed.

15.2.2 Ray Diagrams

A ray diagram is a drawing that shows the path of light rays. Light rays are drawn using straight
lines and arrow heads. The figure below shows some examples of ray diagrams.

b b

mirror
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Exercise: Light Rays

1. Are light rays real? Explain.

2. Give evidence to support the statement: “Light travels in straight lines”. Draw
a ray diagram to prove this.

3. You are looking at a burning candle. Draw the path of light that enables you
to see that candle.

15.3 Reflection

When you smile into a mirror, you see your own face smiling back at you. This is caused by the
reflection of light rays on the mirror. Reflection occurs when a light ray bounces off a surface.

15.3.1 Terminology

In Chapters 13 and 14 we saw that when a pulse or wave strikes a surface it is reflected. This
means that waves bounce off things. Sound waves bounce off walls, light waves bounce off
mirrors, radar waves bounce off aeroplanes and it can explain how bats can fly at night and
avoid things as thin as telephone wires. The phenomenon of reflection is a very important and
useful one.

We will use the following terminology. The incoming light ray is called the incident ray. The
light ray moving away from the surface is the reflected ray. The most important characteristic
of these rays is their angles in relation to the reflecting surface. These angles are measured
with respect to the normal of the surface. The normal is an imaginary line perpendicular to
the surface. The angle of incidence, θi is measured between the incident ray and the surface
normal. The angle of reflection, θr is measured between the reflected ray and the surface
normal. This is shown in Figure 15.4.

When a ray of light is reflected, the reflected ray lies in the same plane as the incident ray and
the normal. This plane is called the plane of incidence and is shown in Figure 15.5.

incident
re
fle
ct
edray ra
y

surface

n
or
m
al

θ i θ r

Figure 15.4: The angles of incidence and reflection are measured with respect to the surface
normal.

15.3.2 Law of Reflection

The Law of Reflection states that the angles of incidence and reflection are always equal and
that the reflected ray always lies in the plane of incidence.
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Normal

Plane of incidence

Surface

θi θr

Figure 15.5: The plane of incidence is the plane including the incident ray, reflected ray, and the
surface normal.

Definition: Law of Reflection
The Law of Reflection states that the angle of incidence is equal to the angle of reflection.

θi = θr

The simplest example of the law of incidence is if the angle of incidence is 0◦. In this case, the
angle of reflection is also 0◦. You see this when you look straight into a mirror.

surface

incident ray

surface

reflected ray

Figure 15.6: When a wave strikes a surface at right angles to the surface, then the wave is
reflected directly back.

If the angle of incidence is not 0◦, then the angle of reflection is also not 0◦. For example, if a
light strikes a surface at 60◦ to the surface normal, then the angle that the reflected ray makes
with the surface normal is also 60◦ as shown in Figure 15.7.

Worked Example 47: Law of Reflection
Question: An incident ray strikes a smooth reflective surface at an angle of
33◦ to the surface normal. Calculate the angle of reflection.
Answer
Step 1 : Determine what is given and what is required
We are given the angle between the incident ray and the surface normal.
This is the angle of incidence.
We are required to calculate the angle of reflection.
Step 2 : Determine how to approach the problem
We can use the Law of Reflection, which states that the angle of incidence
is equal to the angle of reflection.
Step 3 : Calculate the angle of reflection
We are given the angle of incidence to be 33◦. Therefore, the angle of
reflection is also 33◦.
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incident ray

reflected ray
surface

60◦

60◦

Figure 15.7: Ray diagram showing angle of incidence and angle of reflection. The Law of
Reflection states that when a light ray reflects off a surface, the angle of reflection θr is the
same as the angle of incidence θi.

15.3.3 Types of Reflection

The Law of Reflection holds for every light ray. Does this mean that when parallel rays approach
a surface, the reflected rays will also be parallel? This depends on the texture of the reflecting
surface.

smooth surface

(a) Specular reflection

rough surface

(b) Diffuse reflection

Figure 15.8: Specular and diffuse reflection.

Specular Reflection

Figure 15.8(a) shows a surface that is flat and even. Parallel incident light rays hit the smooth
surface and parallel reflected light rays leave the surface. This type of reflection is called specular
reflection. Specular reflection occurs when rays are reflected from a smooth, shiny surface. The
normal to the surface is the same at every point on the surface. Parallel incident rays become
parallel reflected rays. When you look in a mirror, the image you see is formed by specular
reflection.

Diffuse Reflection

Figure 15.8(b) shows a surface with bumps and curves. When multiple rays hit this uneven
surface, diffuse reflection occurs. The incident rays are parallel but the reflected rays are not.
Each point on the surface has a different normal. This means the angle of incidence is different
at each point. Then according to the Law of Reflection, each angle of reflection is different.
Diffuse reflection occurs when light rays are reflected from bumpy surfaces. You can still see a
reflection as long as the surface is not too bumpy. Diffuse reflection enables us to see all objects
that are not sources of light.
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Activity :: Experiment : Specular and Diffuse Reflection

A bouncing ball can be used to demonstrate the basic difference between specular
and diffuse reflection.
Aim:
To demonstrate and compare specular and diffuse reflection.
Apparatus:
You will need:

1. a small ball (a tennis ball or a table tennis ball is perfect)

2. a smooth surface, like the floor inside the classroom

3. a very rough surface, like a rocky piece of ground

Method:

1. Bounce the ball on the smooth floor and observe what happens.

2. Bounce the ball on the rough ground floor and observe what happens.

3. What do you observe?

4. What is the difference between the two surfaces?

Conclusions:
You should have seen that the ball bounces (is reflected off the floor) in a predictable
manner off the smooth floor, but bounces unpredictably on the rough ground.

The ball can be seen to be a ray of light and the floor or ground is the reflecting
surface. For specular reflection (smooth surface), the ball bounces predictably. For
diffuse reflection (rough surface), the ball bounces unpredictably.

Exercise: Reflection

1. The diagram shows a curved surface. Draw normals to the surface at the
marked points.

b
b

b

b

b
b

b

b

A
B

C

D

E
F

G

H

2. Which of the points, A–H, in the diagram, correspond to the following:

(a) normal

(b) angle of incidence

(c) angle of reflection

(d) incident ray

(e) reflected ray

EB A

C D

surface

3. State the Law of Reflection. Draw a diagram, label the appropriate angles and
write a mathematical expression for the Law of Reflection.
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4. Draw a ray diagram to show the relationship between the angle of incidence
and the angle of reflection.

5. The diagram shows an incident ray I. Which of the other 5 rays (A, B, C, D,
E) best represents the reflected ray of I?

surface

normal
A

B
C

D

E

I

6. A ray of light strikes a surface at 15◦ to the surface normal. Draw a ray diagram
showing the incident ray, reflected ray and surface normal. Calculate the angles
of incidence and reflection and fill them in on your diagram.

7. A ray of light leaves a surface at 45◦ to the surface normal. Draw a ray diagram
showing the incident ray, reflected ray and surface normal. Calculate the angles
of incidence and reflection and fill them in on your diagram.

8. A ray of light strikes a surface at 25◦ to the surface. Draw a ray diagram
showing the incident ray, reflected ray and surface normal. Calculate the angles
of incidence and reflection and fill them in on your diagram.

9. A ray of light leaves a surface at 65◦ to the surface. Draw a ray diagram
showing the incident ray, reflected ray and surface normal. Calculate the angles
of incidence and reflection and fill them in on your diagram.

10. Explain the difference between specular and diffuse reflection.

11. We see an object when the light that is reflected by the object enters our eyes.
Do you think the reflection by most objects is specular reflection or diffuse
reflection? Explain.

12. A beam of light (for example from a torch) is generally not visible at night, as
it travels through air. Try this for yourself. However, if you shine the torch
through dust, the beam is visible. Explain why this happens.

13. If a torch beam is shone across a classroom, only students in the direct line of
the beam would be able to see that the torch is shining. However, if the beam
strikes a wall, the entire class will be able to see the spot made by the beam
on the wall. Explain why this happens.

14. A scientist looking into a flat mirror hung perpendicular to the floor cannot see
her feet but she can see the hem of her lab coat. Draw a ray diagram to help
explain the answers to the following questions:

(a) Will she be able to see her feet if she backs away from the mirror?

(b) What if she moves towards the mirror?

15.4 Refraction

In the previous sections we studied light reflecting off various surfaces. What happens when
light passes through a medium? The speed of light, like that of all waves, is dependent on the
medium in which it is travelling. When light moves from one medium into another (for example,
from air to glass), the speed of light changes. The effect is that the light ray passing into a new
medium is refracted, or bent. Refraction is therefore the bending of light as it moves from one
optical medium to another.
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Definition: Refraction
Refraction is the bending of light that occurs because light travels at different speeds in
different materials.

When light travels from one medium to another, it will be bent away from its original path.
When it travels from an optically dense medium like water or glass to a less dense medium like
air, it will be refracted away from the normal (Figure 15.9). Whereas, if it travels from a less
dense medium to a denser one, it will be refracted towards the normal (Figure 15.10).

water

air

normal

incident
ray

refracted
ray

the light is bent
or refracted away
from the normal

this is the path
that the light
should take if
the two media

were the same

Figure 15.9: Light is moving from an optically dense medium to an optically less dense medium.
Light is refracted away from the normal.

water

air

normal

incident
ray

refracted
ray

the light is bent
or refracted towards

the normal

original path
of light

Figure 15.10: Light is moving from an optically less dense medium to an optically denser medium.
Light is refracted towards the normal.

Just as we defined an angle of reflection in the previous section, we can similarly define an angle
of refraction as the angle between the surface normal and the refracted ray. This is shown in
Figure 15.11.

15.4.1 Refractive Index

Which is easier to travel through, air or water? People usually travel faster through air. So
does light! The speed of light and therefore the degree of bending of the light depends on the
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surface normal

Air

Water

θ

(a) Light moves from air to water

surface normal

Air

Water

θ

(b) Light moves from water to air

Figure 15.11: Light moving from one medium to another bends towards or away from the surface
normal. The angle of refraction θ is shown.

refractive index of material through which the light passes. The refractive index (symbol n) is
the ratio of the speed of light in a vacuum to its speed in the material.

Definition: Refractive Index
The refractive index of a material is the ratio of the speed of light in a vacuum to its speed
in the medium.

Interesting

Fact

teresting

Fact
The symbol c is used to represent the speed of light in a vacuum.

c = 299 792 485m · s−1

For purposes of calculation, we use 3 × 108 m · s−1. A vacuum is a region with
no matter in it, not even air. However, the speed of light in air is very close to
that in a vacuum.

Definition: Refractive Index
The refractive index (symbol n) of a material is the ratio of the speed of light in a vacuum
to its speed in the material and gives an indication of how difficult it is for light to get
through the material.

n =
c

v

where
n = refractive index (no unit)
c = speed of light in a vacuum (3,00× 108 m · s−1)
v = speed of light in a given medium (m · s−1)

Extension: Refractive Index and Speed of Light
Using

n =
c

v

we can also examine how the speed of light changes in different media, because the
speed of light in a vacuum (c) is constant.

If the refractive index n increases, the speed of light in the material v must
decrease. Light therefore travels slowly through materials of high n.
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Table 15.1 shows refractive indices for various materials. Light travels slower in any material
than it does in a vacuum, so all values for n are greater than 1.

Medium Refractive Index

Vacuum 1
Helium 1,000036
Air* 1,0002926
Carbon dioxide 1,00045
Water: Ice 1,31
Water: Liquid (20◦C) 1,333
Acetone 1,36
Ethyl Alcohol (Ethanol) 1,36
Sugar solution (30%) 1,38
Fused quartz 1,46
Glycerine 1,4729
Sugar solution (80%) 1,49
Rock salt 1,516
Crown Glass 1,52
Sodium chloride 1,54
Polystyrene 1,55 to 1,59
Bromine 1,661
Sapphire 1,77
Glass (typical) 1,5 to 1,9
Cubic zirconia 2,15 to 2,18
Diamond 2,419
Silicon 4,01

Table 15.1: Refractive indices of some materials. nair is calculated at STP.

15.4.2 Snell’s Law

Now that we know that the degree of bending, or the angle of refraction, is dependent on the
refractive index of a medium, how do we calculate the angle of refraction?

The angles of incidence and refraction when light travels from one medium to another can be
calculated using Snell’s Law.

Definition: Snell’s Law

n1 sin θ1 = n2 sin θ2

where
n1 = Refractive index of material 1
n2 = Refractive index of material 2
θ1 = Angle of incidence
θ2 = Angle of refraction

Remember that angles of incidence and refraction are measured from the normal, which is an
imaginary line perpendicular to the surface.

Suppose we have two media with refractive indices n1 and n2. A light ray is incident on the
surface between these materials with an angle of incidence θ1. The refracted ray that passes
through the second medium will have an angle of refraction θ2.
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Worked Example 48: Using Snell’s Law
Question: A light ray with an angle of incidence of 35◦ passes from water
to air. Find the angle of refraction using Snell’s Law and Table 15.1. Discuss
the meaning of your answer.
Answer
Step 1 : Determine the refractive indices of water and air
From Table 15.1, the refractive index is 1,333 for water and about 1 for air.
We know the angle of incidence, so we are ready to use Snell’s Law.
Step 2 : Substitute values
According to Snell’s Law:

n1 sin θ1 = n2 sin θ2

1,33 sin 35◦ = 1 sin θ2

sin θ2 = 0,763

θ2 = 49,7◦ or 130,3◦

Since 130,3◦ is larger than 90◦, the solution is:

θ2 = 49,7◦

Step 3 : Discuss the answer
The light ray passes from a medium of high refractive index to one of low
refractive index. Therefore, the light ray is bent away from the normal.

Worked Example 49: Using Snell’s Law
Question: A light ray passes from water to diamond with an angle of
incidence of 75◦. Calculate the angle of refraction. Discuss the meaning of
your answer.
Answer
Step 1 : Determine the refractive indices of water and air
From Table 15.1, the refractive index is 1,333 for water and 2,42 for diamond.
We know the angle of incidence, so we are ready to use Snell’s Law.
Step 2 : Substitute values and solve
According to Snell’s Law:

n1 sin θ1 = n2 sin θ2

1,33 sin 75◦ = 2,42 sin θ2

sin θ2 = 0,531

θ2 = 32,1◦.

Step 3 : Discuss the answer
The light ray passes from a medium of low refractive index to one of high
refractive index. Therefore, the light ray is bent towards the normal.
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If
n2 > n1

then from Snell’s Law,
sin θ1 > sin θ2.

For angles smaller than 90◦, sin θ increases as θ increases. Therefore,

θ1 > θ2.

This means that the angle of incidence is greater than the angle of refraction and the light ray
is bent toward the normal.

Similarly, if
n2 < n1

then from Snell’s Law,
sin θ1 < sin θ2.

For angles smaller than 90◦, sin θ increases as θ increases. Therefore,

θ1 < θ2.

This means that the angle of incidence is less than the angle of refraction and the light ray is
away toward the normal.

Both these situations can be seen in Figure 15.12.

n1 n2

normal

su
rf
ac
e

(a) n1 < n2

n1 n2

normal

su
rf
ac
e

(b) n1 > n2

Figure 15.12: Refraction of two light rays. (a) A ray travels from a medium of low refractive
index to one of high refractive index. The ray is bent towards the normal. (b) A ray travels from
a medium with a high refractive index to one with a low refractive index. The ray is bent away
from the normal.

What happens to a ray that lies along the normal line? In this case, the angle of incidence is 0◦

and

sin θ2 =
n1

n2
sin θ1

= 0

∴ θ2 = 0.

This shows that if the light ray is incident at 0◦, then the angle of refraction is also 0◦. The ray
passes through the surface unchanged, i.e. no refraction occurs.

Activity :: Investigation : Snell’s Law 1

The angles of incidence and refraction were measured in five unknown media and
recorded in the table below. Use your knowledge about Snell’s Law to identify each
of the unknown media A - E. Use Table 15.1 to help you.
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Medium 1 n1 θ1 θ2 n2 Unknown Medium
Air 1,000036 38 11,6 ? A
Air 1,000036 65 38,4 ? B

Vacuum 1 44 0,419 ? C
Air 1,000036 15 29,3 ? D

Vacuum 1 20 36,9 ? E

Activity :: Investigation : Snell’s Law 2
Zingi and Tumi performed an investigation to identify an unknown liquid. They

shone a beam of light into the unknown liquid, varying the angle of incidence and
recording the angle of refraction. Their results are recorded in the following table:

Angle of Incidence Angle of Refraction

0,0◦ 0,00◦

5,0◦ 3,76◦

10,0◦ 7,50◦

15,0◦ 11,2◦

20,0◦ 14,9◦

25,0◦ 18,5◦

30,0◦ 22,1◦

35,0◦ 25,5◦

40,0◦ 28,9◦

45,0◦ 32,1◦

50,0◦ 35,2◦

55,0◦ 38,0◦

60,0◦ 40,6◦

65,0◦ 43,0◦

70,0◦ ?
75,0◦ ?
80,0◦ ?
85,0◦ ?

1. Write down an aim for the investigation.

2. Make a list of all the apparatus they used.

3. Identify the unknown liquid.

4. Predict what the angle of refraction will be for 70◦, 75◦, 80◦ and 85◦.

15.4.3 Apparent Depth

Imagine a coin on the bottom of a shallow pool of water. If you reach for the coin, you will miss
it because the light rays from the coin are refracted at the water’s surface.

Consider a light ray that travels from an underwater object to your eye. The ray is refracted at
the water surface and then reaches your eye. Your eye does not know Snell’s Law; it assumes
light rays travel in straight lines. Your eye therefore sees the image of the at coin shallower
location. This shallower location is known as the apparent depth.

The refractive index of a medium can also be expressed as

n =
real depth

apparent depth
.
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real
depth

apparent

depth

Worked Example 50: Apparent Depth 1
Question: A coin is placed at the bottom of a 40 cm deep pond. The
refractive index for water is 1,33. How deep does the coin appear to be?
Answer
Step 1 : Identify what is given and what is asked
n = 1,33
real depth = 40 cm
apparent depth = ?
Step 2 : Substitute values and find answer

n =
real depth

apparent depth

1,33 =
40

x

x =
40

1,33
= 30,08 cm

The coin appears to be 30,08 cm deep.

Worked Example 51: Apparent Depth 2
Question: A R1 coin appears to be 7 cm deep in a colourless liquid known
to be listed in Table 15.1. The depth of the liquid is 10,43 cm.

1. Determine the refractive index of the liquid.

2. Identify the liquid.

Answer
Step 1 : Identify what is given and what is asked
real depth = 7 cm
apparent depth = 10,43 cm
n = ?
Identify the liquid.
Step 2 : Calculate refractive index
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n =
real depth

apparent depth

=
10,43

7
= 1,49

Step 3 : Identify the liquid
Use Table 15.1. The liquid is an 80% sugar solution.

Exercise: Refraction

1. Explain refraction in terms of a change of wave speed in different media.

2. In the diagram, label the following:

(a) angle of incidence

(b) angle of refraction

(c) incident ray

(d) refracted ray

(e) normal

A

Medium 1

Medium 2

E
F

G

D

C

B

3. What is the angle of refraction?

4. Describe what is meant by the refractive index of a medium.

5. State Snell’s Law.

6. In the diagram, a ray of light strikes the interface between two media.

normal

Medium 1

Medium 2

Draw what the refracted ray would look like if:

(a) medium 1 had a higher refractive index than medium 2.
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(b) medium 1 had a lower refractive index than medium 2.

7. Light travels from a region of glass into a region of glycerine, making an angle
of incidence of 40◦.

(a) Describe the path of the light as it moves into the glycerine.

(b) Calculate the angle of refraction.

8. A ray of light travels from silicon to water. If the ray of light in the water
makes an angle of 69◦ to the surface normal, what is the angle of incidence in
the silicon?

9. Light travels from a medium with n = 1,25 into a medium of n = 1,34, at an
angle of 27◦ from the interface normal.

(a) What happens to the speed of the light? Does it increase, decrease, or
remain the same?

(b) What happens to the wavelength of the light? Does it increase, decrease,
or remain the same?

(c) Does the light bend towards the normal, away from the normal, or not at
all?

10. Light travels from a medium with n = 1,63 into a medium of n = 1,42.

(a) What happens to the speed of the light? Does it increase, decrease, or
remain the same?

(b) What happens to the wavelength of the light? Does it increase, decrease,
or remain the same?

(c) Does the light bend towards the normal, away from the normal, or not at
all?

11. Light is incident on a glass prism. The prism is surrounded by air. The angle of
incidence is 23◦. Calculate the angle of reflection and the angle of refraction.

12. Light is refracted at the interface between air and an unknown medium. If
the angle of incidence is 53◦ and the angle of refraction is 37◦, calculate the
refractive index of the unknown, second medium.

13. A coin is placed in a bowl of acetone (n = 1,36). The coin appears to be 10
cm deep. What is the depth of the acetone?

14. A dot is drawn on a piece of paper and a glass prism placed on the dot according
to the diagram.

glass

4 cm6 cm

dot

(a) Use the information supplied to determine the refractive index of glass.

(b) Draw a ray diagram to explain how the image of the dot is above where
the dot really is.

15. Light is refracted at the interface between a medium of refractive index 1,5
and a second medium of refractive index 2,1. If the angle of incidence is 45◦,
calculate the angle of refraction.

16. A ray of light strikes the interface between air and diamond. If the incident
ray makes an angle of 30◦ with the interface, calculate the angle made by the
refracted ray with the interface.

17. Challenge Question: What values of n are physically impossible to achieve?
Explain your answer. The values provide the limits of possible refractive indices.

18. Challenge Question: You have been given a glass beaker full of an unknown
liquid. How would you identify what the liquid is? You have the following
pieces of equipment available for the experiment: a laser, a protractor, a ruler,
a pencil, and a reference guide containing optical properties of various liquids.
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15.5 Mirrors

A mirror is a highly reflective surface. The most common mirrors are flat and are known as
plane mirrors. Household mirrors are plane mirrors. They are made of a flat piece of glass with
a thin layer of silver nitrate or aluminium on the back. However, other mirrors are curved and
are either convex mirrors or are concave mirrors. The reflecting properties of all three types
of mirrors will be discussed in this section.

15.5.1 Image Formation

Definition: Image
An image is a representation of an object formed by a mirror or lens. Light from the image
is seen.

mirror

}
}

distance (di)

distance(do)

image

object
object

image

Figure 15.13: An object formed in a mirror is real and upright.

If you place a candle in front of a mirror, you now see two candles. The actual, physical candle
is called the object and the picture you see in the mirror is called the image. The object is the
source of the incident rays. The image is the picture that is formed by the reflected rays.

The object could be an actual source that emits light, such as a light bulb or a candle. More
commonly, the object reflects light from another source. When you look at your face in the
mirror, your face does not emit light. Instead, light from a light bulb or from the sun reflects off
your face and then hits the mirror. However, in working with light rays, it is easiest to pretend
the light is coming from the object.

An image formed by reflection may be real or virtual. A real image occurs when light rays
actually intersect at the image. A real image is inverted, or upside down. A virtual image occurs
when light rays do not actually meet at the image. Instead, you ”see” the image because your
eye projects light rays backward. You are fooled into seeing an image! A virtual image is erect,
or right side up (upright).

You can tell the two types apart by putting a screen at the location of the image. A real image
can be formed on the screen because the light rays actually meet there. A virtual image cannot
be seen on a screen, since it is not really there.

To describe objects and images, we need to know their locations and their sizes. The distance
from the mirror to the object is the object distance, do.

The distance from the mirror to the image is the image distance, di.

15.5.2 Plane Mirrors

Activity :: Investigation : Image formed by a mirror
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1. Stand one step away from a large mirror

2. What do you observe in the mirror? This is called your image.

3. What size is your image? Bigger, smaller or the same size as you?

4. How far is your image from you? How far is your image from the mirror?

5. Is your image upright or upside down?

6. Take one step backwards. What does your image do? How far are you away
from your image?

7. If it were a real object, which foot would the image of you right show fit?

b b

one step

mirror

you your image

Figure 15.14: An image in a mirror is virtual, upright, the same size and inverted front to back.

When you look into a mirror, you see an image of yourself.

The image created in the mirror has the following properties:

1. The image is virtual.

2. The image is the same distance behind the mirror as the object is in front of the mirror.

3. The image is inverted front to back.

4. The image is the same size as the object.

5. The image is upright.

Virtual images are images formed in places where light does not really reach. Light does not
really pass through the mirror to create the image; it only appears to an observer as though the
light were coming from behind the mirror. Whenever a mirror creates an image which is virtual,
the image will always be located behind the mirror where light does not really pass.

Definition: Virtual Image
A virtual image is upright, on the opposite side of the mirror as the object, and light does
not actually reach it.
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15.5.3 Ray Diagrams

We draw ray diagrams to predict the image that is formed by a plane mirror. A ray diagram is
a geometrical picture that is used for analyzing the images formed by mirrors and lenses. We
draw a few characteristic rays from the object to the mirror. We then follow ray-tracing rules to
find the path of the rays and locate the image.

Important: A mirror obeys the Law of Reflection.

The ray diagram for the image formed by a plane mirror is the simplest possible ray diagram.
Figure 15.15 shows an object placed in front of a plane mirror. It is convenient to have a central
line that runs perpendicular to the mirror. This imaginary line is called the principal axis.

Important: Ray diagrams
The following should be remembered when drawing ray diagrams:

1. Objects are represented by arrows. The length of the arrow represents the height of
the object.

2. If the arrow points upwards, then the object is described as upright or erect. If the
arrow points downwards then the object is described as inverted.

3. If the object is real, then the arrow is drawn with a solid line. If the object is virtual,
then the arrow is drawn with a dashed line.

Method: Ray Diagrams for Plane Mirrors
Ray diagrams are used to find the position and size and whether the image is real or virtual.

1. Draw the plane mirror as a straight line on a principal axis.

Principal

Axis

mirror

2. Draw the object as an arrow in front of the mirror.

Principal
Axis

mirror

Object

object
distance

3. Draw the image of the object, by using the principle that the image is placed at the same
distance behind the mirror that the object is in front of the mirror. The image size is also
the same as the object size.
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Principal
Axis

mirror

image distanceObject

Image

image size the
same as object

same as object distance

4. Place a dot at the point the eye is located.

5. Pick one point on the image and draw the reflected ray that travels to the eye as it sees
this point. Remember to add an arrowhead.

mirror

Object Image

b

6. Draw the incident ray for light traveling from the corresponding point on the object to the
mirror, such that the law of reflection is obeyed.

Object Image

b

θi

θr

θi = θr

7. Continue for other extreme points on the object (i.e. the tip and base of the arrow).

Object Image

Figure 15.15: Ray diagram to predict the image formed by a plane mirror.

Suppose a light ray leaves the top of the object traveling parallel to the principal axis. The ray
will hit the mirror at an angle of incidence of 0 degrees. We say that the ray hits the mirror
normally. According to the law of reflection, the ray will be reflected at 0 degrees. The ray then
bounces back in the same direction. We also project the ray back behind the mirror because this
is what your eye does.

Another light ray leaves the top of the object and hits the mirror at its centre. This ray will be
reflected at the same angle as its angle of incidence, as shown. If we project the ray backward
behind the mirror, it will eventually cross the projection of the first ray we drew. We have found
the location of the image! It is a virtual image since it appears in an area that light cannot
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actually reach (behind the mirror). You can see from the diagram that the image is erect and is
the same size as the object. This is exactly as we expected.

We use a dashed line to indicate that the image is virtual.

15.5.4 Spherical Mirrors

The second class of mirrors that we will look at are spherical mirrors. These mirrors are called
spherical mirrors because if you take a sphere and cut it as shown in Figure 15.16 and then polish
the inside of one and the outside of the other, you will get a concave mirror and convex mirror
as shown. These two mirrors will be studied in detail.

The centre of curvature is the point at the centre of the sphere and describes how big the sphere
is.

Principal Axis b

centre of
curvature

reflective surface

concave mirror

convex mirror

reflective surface

Figure 15.16: When a sphere is cut and then polished to a reflective surface on the inside a
concave mirror is obtained. When the outside is polished to a reflective surface, a convex mirror
is obtained.

15.5.5 Concave Mirrors

The first type of curved mirror we will study are concave mirrors. Concave mirrors have the shape
shown in Figure 15.17. As with a plane mirror, the principal axis is a line that is perpendicular
to the centre of the mirror.

focal point

Principal Axis

Figure 15.17: Concave mirror with principal axis.

If you think of light reflecting off a concave mirror, you will immediately see that things will look
very different compared to a plane mirror. The easiest way to understand what will happen is
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to draw a ray diagram and work out where the images will form. Once we have done that it is
easy to see what properties the image has.

First we need to define a very important characteristic of the mirror. We have seen that the
centre of curvature is the centre of the sphere from which the mirror is cut. We then define that
a distance that is half-way between the centre of curvature and the mirror on the principal axis.
This point is known as the focal point and the distance from the focal point to the mirror is
known as the focal length (symbol f). Since the focal point is the midpoint of the line segment
joining the vertex and the center of curvature, the focal length would be one-half the radius of
curvature. This fact can come in very handy, remember if you know one then you know the
other!

Definition: Focal Point
The focal point of a mirror is the midpoint of a line segment joining the vertex and the
centre of curvature. It is the position at which all parallel rays are focussed.

Why are we making such a big deal about this point we call the focal point? It has an important
property we will use often. A ray parallel to the principal axis hitting the mirror will always be
reflected through the focal point. The focal point is the position at which all parallel rays are
focussed.

focal point

Figure 15.18: All light rays pass through the focal point.

Center
F A

B

A’

B’

Object

Image

Focus

Figure 15.19: A concave mirror with three rays drawn to locate the image. Each incident ray
is reflected according to the Law of Reflection. The intersection of the reflected rays gives the
location of the image. Here the image is real and inverted.
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From Figure 15.19, we see that the image created by a concave mirror is real and inverted, as
compared to the virtual and erect image created by a plane mirror.

Definition: Real Image
A real image can be cast on a screen; it is inverted, and on the same side of the mirror as
the object.

Extension: Convergence
A concave mirror is also known as a converging mirror. Light rays appear to converge
to the focal point of a concave mirror.

15.5.6 Convex Mirrors

The second type of curved mirror we will study are convex mirrors. Convex mirrors have the shape
shown in Figure 15.20. As with a plane mirror, the principal axis is a line that is perpendicular
to the centre of the mirror.

We have defined the focal point as that point that is half-way along the principal axis between
the centre of curvature and the mirror. Now for a convex mirror, this point is behind the mirror.
A convex mirror has a negative focal length because the focal point is behind the mirror.

reflecting surface

bb b

C F O

focal length
PA

Figure 15.20: Convex mirror with principle axis, focal point (F) and centre of curvature (C). The
centre of the mirror is the optical centre (O).

To determine what the image from a convex mirror looks like and where the image is located,
we need to remember that a mirror obeys the laws of reflection and that light appears to come
from the image. The image created by a convex mirror is shown in Figure 15.21.
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C F
A

BPR
PR’

MR

MR’

FR FR’

ObjectImageF O
b b

Figure 15.21: A convex mirror with three rays drawn to locate the image. Each incident ray is
reflected according to the Law of Reflection. The reflected rays diverge. If the reflected rays are
extended behind the mirror, then their intersection gives the location of the image behind the
mirror. For a convex mirror, the image is virtual and upright.

From Figure 15.21, we see that the image created by a convex mirror is virtual and upright, as
compared to the real and inverted image created by a concave mirror.

Extension: Divergence
A convex mirror is also known as a diverging mirror. Light rays appear to diverge
from the focal point of a convex mirror.

15.5.7 Summary of Properties of Mirrors

The properties of mirrors are summarised in Table 15.2.

Table 15.2: Summary of properties of concave and convex mirrors.
Plane Concave Convex

– converging diverging
virtual image real image virtual image

upright inverted upright
image behind mirror image in front of mirror image behind mirror

15.5.8 Magnification

In Figures 15.19 and 15.21, the height of the object and image arrows were different. In any
optical system where images are formed from objects, the ratio of the image height, hi, to the
object height, ho is known as the magnification, m.

m =
hi

ho

This is true for the mirror examples we showed above and will also be true for lenses, which will
be introduced in the next sections. For a plane mirror, the height of the image is the same as the
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height of the object, so the magnification is simply m = hi

ho
= 1. If the magnification is greater

than 1, the image is larger than the object and is said to be magnified. If the magnification is
less than 1, the image is smaller than the object so the image is said to be diminished.

Worked Example 52: Magnification
Question: A concave mirror forms an image that is 4,8 cm high. The height
of the object is 1,6 cm. Calculate the magnification of the mirror.
Answer
Step 1 : Identify what is given and what is asked.
Image height hi = 4,8 cm
Object height ho = 1,6 cm
Magnification m = ?
Step 2 : Substitute the values and calculate m.

m =
hi

ho

=
4,8

1,6
= 3

The magnification is 3 times.

Exercise: Mirrors

1. List 5 properties of a virtual image created by reflection from a plane mirror.

2. What angle does the principal axis make with a plane mirror?

3. Is the principal axis a normal to the surface of the plane mirror?

4. Do the reflected rays that contribute to forming the image from a plane mirror
obey the law of reflection?

5. If a candle is placed 50 cm in front of a plane mirror, how far behind the plane
mirror will the image be? Draw a ray diagram to show how the image is formed.

6. If a stool 0,5 m high is placed 2 m in front of a plane mirror, how far behind
the plane mirror will the image be and how high will the image be?

7. If Susan stands 3 m in front of a plane mirror, how far from Susan will her
image be located?

8. Explain why ambulances have the word ‘ambulance’ reversed on the front bon-
net of the car?

9. Complete the diagram by filling in the missing lines to locate the image.
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principal axis

Mirror

b

10. An object 2 cm high is placed 4 cm in front of a plane mirror. Draw a ray
diagram, showing the object, the mirror and the position of the image.

11. The image of an object is located 5 cm behind a plane mirror. Draw a ray
diagram, showing the image, the mirror and the position of the object.

12. How high must a mirror be so that you can see your whole body in it? Does it
make a difference if you change the distance you stand in front of the mirror?
Explain.

13. If 1-year old Tommy crawls towards a mirror at a rate of 0,3 m·s−1, at what
speed will Tommy and his image approach each other?

14. Use a diagram to explain how light converges to the focal point of a concave
mirror.

15. Use a diagram to explain how light diverges away from the focal point of a
convex mirror.

16. An object 1 cm high is placed 4 cm from a concave mirror. If the focal length
of the mirror is 2 cm, find the position and size of the image by means of a ray
diagram. Is the image real or virtual?

17. An object 2 cm high is placed 4 cm from a convex mirror. If the focal length
of the mirror is 4 cm, find the position and size of the image by means of a ray
diagram. Is the image real or virtual?

18. Calculate the magnification for each of the mirrors in the previous two questions.

15.6 Total Internal Reflection and Fibre Optics

15.6.1 Total Internal Reflection

Activity :: Investigation : Total Internal Reflection
Work in groups of four. Each group will need a raybox (or torch) with slit,

triangular glass prism and protractor. If you do not have a raybox, use a torch and
stick two pieces of tape over the lens so that only a thin beam of light is visible.
Aim:
To investigate total internal reflection.
Method:
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1. Place the raybox next to the glass block so that the light shines right through
without any refraction. See ”Position 1” in diagram.

Position 1

No refraction

takes place

ray box

glass prism

refracted ray

incident ray

2. Move the raybox such that the light is refracted by the glass. See ”Position 2”.

Position 2

Refraction

takes place

3. Move the raybox further and observe what happens.

Position 3

More refraction
takes place

4. Move the raybox until the refracted ray seems to disappear. See ”Position 4”.
The angle of the incident light is called the critical angle.

Position 4

θi = θc

5. Move the raybox further and observe what happens. See ”Position 5”. The
light shines back into the glass block. This is called total internal reflection.
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Position 5

θi > θc

incident ray

reflected ray

When we increase the angle of incidence, we reach a point where the angle of refraction is 90◦

and the refracted ray runs along the surface of the medium. This angle of incidence is called the
critical angle.

Definition: Critical Angle
The critical angle is the angle of incidence where the angle of reflection is 90◦. The light
must shine from a dense to a less dense medium.

If the angle of incidence is bigger than this critical angle, the refracted ray will not emerge from
the medium, but will be reflected back into the medium. This is called total internal reflection.

Total internal reflection takes place when

• light shines from an optically denser medium to an optically less dense medium.

• the angle of incidence is greater than the critical angle.

Definition: Total Internal Reflection
Total internal reflection takes place when light is reflected back into the medium because
the angle of incidence is greater than the critical angle.

Less dense
medium

medium
Denser

θc > θc

Figure 15.22: Diagrams to show the critical angle and total internal reflection.

Each medium has its own unique critical angle. For example, the critical angle for glass is 42◦,
and that of water is 48,8◦. We can calculate the critical angle for any medium.

Calculating the Critical Angle

Now we shall learn how to derive the value of the critical angle for two given media. The process
is fairly simple and involves just the use of Snell’s Law that we have already studied. To recap,
Snell’s Law states:

n1 sin θ1 = n2 sin θ2
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where n1 is the refractive index of material 1, n2 is the refractive index of material 2, θ1 is the
angle of incidence and θ2 is the angle of refraction. For total internal reflection we know that
the angle of incidence is the critical angle. So,

θ1 = θc.

However, we also know that the angle of refraction at the critical angle is 90◦. So we have:

θ2 = 90◦.

We can then write Snell’s Law as:

n1 sin θc = n2 sin 90
◦

Solving for θc gives:

n1 sin θc = n2 sin 90
◦

sin θc =
n2

n1
(1)

∴ θc = sin−1 (
n2

n1
)

Important: Take care that for total internal reflection the incident ray is always in the
denser medium.

Worked Example 53: Critical Angle 1
Question: Given that the refractive indices of air and water are 1 and 1,33,
respectively, find the critical angle.
Answer
Step 1 : Determine how to approach the problem
We know that the critical angle is given by:

θc = sin−1(
n2

n1
)

Step 2 : Solve the problem

θc = sin−1 (
n2

n1
)

= sin−1 (
1

1,33
)

= 48,8◦

Step 3 : Write the final answer
The critical angle for light travelling from water to air is 48,8◦.

Worked Example 54: Critical Angle 2
Question: Complete the following ray diagrams to show the path of light
in each situation.
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air

water

30◦

a)

air

water

50◦

b)

air

water

48,8◦

c)

water

air

48,8◦

d)

Answer
Step 1 : Identify what is given and what is asked
The critical angle for water is 48,8◦.
We are asked to complete the diagrams.
For incident angles smaller than 48,8◦ refraction will occur.
For incident angles greater than 48,8◦ total internal reflection will occur.
For incident angles equal to 48,8◦ refraction will occur at 90◦.
The light must travel from a high optical density to a lower one.
Step 2 : Complete the diagrams

air

water

30◦

a)

Refraction occurs (ray is bent away from the normal)

air

water

50◦

b)

50◦

Total internal reflection occurs

air

water

48,8◦

c)
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θc = 48,8◦

water

air

48,8◦

d)

Refraction towards the normal (air is less dense than water)

15.6.2 Fibre Optics

Total internal reflection is a powerful tool since it can be used to confine light. One of the
most common applications of total internal reflection is in fibre optics. An optical fibre is a thin,
transparent fibre, usually made of glass or plastic, for transmitting light. Optical fibres are usually
thinner than a human hair! The construction of a single optical fibre is shown in Figure 15.23.

The basic functional structure of an optical fibre consists of an outer protective cladding and an
inner core through which light pulses travel. The overall diameter of the fibre is about 125 µm
(125×10−6 m) and that of the core is just about 50 µm (10×10−6 m). The mode of operation
of the optical fibres, as mentioned above, depends on the phenomenon of total internal reflection.
The difference in refractive index of the cladding and the core allows total internal reflection in
the same way as happens at an air-water surface. If light is incident on a cable end with an
angle of incidence greater than the critical angle then the light will remain trapped inside the
glass strand. In this way, light travels very quickly down the length of the cable.

inner core

cladding

Figure 15.23: Structure of a single optical fibre.

Fibre Optics in Telecommunications

Optical fibres are most common in telecommunications, because information can be transported
over long distances, with minimal loss of data. The minimised loss of data gives optical fibres
an advantage over conventional cables.

Data is transmitted from one end of the fibre to another in the form of laser pulses. A single strand
is capable of handling over 3000 simultaneous transmissions which is a huge improvement over
the conventional co-axial cables. Multiple signal transmission is achieved by sending individual
light pulses at slightly different angles. For example if one of the pulses makes a 72,23◦ angle
of incidence then a separate pulse can be sent at an angle of 72,26◦! The transmitted data is
received almost instantaneously at the other end of the cable since the information coded onto
the laser travels at the speed of light! During transmission over long distances repeater stations
are used to amplify the signal which has weakened somewhat by the time it reaches the station.
The amplified signals are then relayed towards their destination and may encounter several other
repeater stations on the way.

Fibre Optics in Medicine

Optic fibres are used in medicine in endoscopes.
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Interesting

Fact

teresting

Fact
Endoscopy means to look inside and refers to looking inside the human body for
diagnosing medical conditions.

The main part of an endoscope is the optical fibre. Light is shone down the optical fibre and a
medical doctor can use the endoscope to look inside a patient. Endoscopes are used to examine
the inside of a patient’s stomach, by inserting the endoscope down the patient’s throat.

Endoscopes allow minimally invasive surgery. This means that a person can be diagnosed and
treated through a small incision. This has advantages over open surgery because endoscopy is
quicker and cheaper and the patient recovers more quickly. The alternative is open surgery which
is expensive, requires more time and is more traumatic for the patient.

Exercise: Total Internal Reflection and Fibre Optics

1. Describe total internal reflection, referring to the conditions that must be sat-
isfied for total internal reflection to occur.

2. Define what is meant by the critical angle when referring to total internal
reflection. Include a ray diagram to explain the concept.

3. Will light travelling from diamond to silicon ever undergo total internal reflec-
tion?

4. Will light travelling from sapphire to diamond undergo total internal reflection?

5. What is the critical angle for light traveling from air to acetone?

6. Light traveling from diamond to water strikes the interface with an angle of
incidence of 86◦. Calculate the critical angle to determine whether the light be
totally internally reflected and so be trapped within the water.

7. Which of the following interfaces will have the largest critical angle?

(a) a glass to water interface

(b) a diamond to water interface

(c) a diamond to glass interface

8. If the fibre optic strand is made from glass, determine the critical angle of the
light ray so that the ray stays within the fibre optic strand.

9. A glass slab is inserted in a tank of water. If the refractive index of water is
1,33 and that of glass is 1,5, find the critical angle.

10. A diamond ring is placed in a container full of glycerin. If the critical angle is
found to be 37,4◦ and the refractive index of glycerin is given to be 1,47, find
the refractive index of diamond.

11. An optical fibre is made up of a core of refractive index 1,9, while the refractive
index of the cladding is 1,5. Calculate the maximum angle which a light pulse
can make with the wall of the core. NOTE: The question does not ask for the
angle of incidence but for the angle made by the ray with the wall of the core,
which will be equal to 90◦- angle of incidence.
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15.7 Summary

1. We can see objects when light from the objects enters our eyes.

2. Light rays are thin imaginary lines of light and are indicated in drawings by means of
arrows.

3. Light travels in straight lines. Light can therefore not travel around corners. Shadows are
formed because light shines in straight lines.

4. Light rays reflect off surfaces. The incident ray shines in on the surface and the reflected
ray is the one that bounces off the surface. The surface normal is the perpendicular line
to the surface where the light strikes the surface.

5. The angle of incidence is the angle between the incident ray and the surface, and the angle
of reflection is the angle between the reflected ray and the surface.

6. The Law of Reflection states the angle of incidence is equal to the angle of reflection and
that the reflected ray lies in the plane of incidence.

7. Specular reflection takes place when parallel rays fall on a surface and they leave the object
as parallel rays. Diffuse reflection takes place when parallel rays are reflected in different
directions.

8. Refraction is the bending of light when it travels from one medium to another. Light
travels at different speeds in different media.

9. The refractive index of a medium is a measure of how easily light travels through the
medium. It is a ratio of the speed of light in a vacuum to the speed of light in the
medium.
n = c

v

10. Snell’s Law gives the relationship between the refractive indices, angles of incidence and
reflection of two media.
n1 sin θ1 = n2 sin θ2

11. Light travelling from one medium to another of lighter optical density will be refracted
towards the normal.
Light travelling from one medium to another of lower optical density will be refracted away
from the normal.

12. Objects in a medium (e.g. under water) appear closer to the surface than they really are.
This is due to the refraction of light, and the refractive index of the medium.
n = real depth

apparent depth

13. Mirrors are highly reflective surfaces. Flat mirrors are called plane mirrors. Curved mirrors
can be convex or concave. The properties of the images formed by mirrors are summarised
in Table 3.2.

14. A real image can be cast on a screen, is inverted and in front of the mirror.
A virtual image cannot be cast on a screen, is upright and behind the mirror.

15. The magnification of a mirror is how many times the image is bigger or smaller than the
object.

m = image height (hi)
object height (h0)

16. The critical angle of a medium is the angle of incidence when the angle of refraction is
90◦ and the refracted ray runs along the interface between the two media.

17. Total internal reflection takes place when light travels from one medium to another of
lower optical density. If the angle of incidence is greater than the critical angle for the
medium, the light will be reflected back into the medium. No refraction takes place.

18. Total internal reflection is used in optical fibres in telecommunication and in medicine in
endoscopes. Optical fibres transmit information much more quickly and accurately than
traditional methods.
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15.8 Exercises

1. Give one word for each of the following descriptions:

1.1 The image that is formed by a plane mirror.

1.2 The perpendicular line that is drawn at right angles to a reflecting surface at the
point of incidence.

1.3 The bending of light as it travels from one medium to another.

1.4 The ray of light that falls in on an object.

1.5 A type of mirror that focuses all rays behind the mirror.

2. State whether the following statements are TRUE or FALSE. If they are false, rewrite the
statement correcting it.

2.1 The refractive index of a medium is an indication of how fast light will travel through
the medium.

2.2 Total internal refraction takes place when the incident angle is larger than the critical
angle.

2.3 The magnification of an object can be calculated if the speed of light in a vacuum
and the speed of light in the medium is known.

2.4 The speed of light in a vacuum is about 3× 108 m.s−1.

2.5 Specular reflection takes place when light is reflected off a rough surface.

3. Choose words from Column B to match the concept/description in Column A. All the
appropriate words should be identified. Words can be used more than once.

Column A Column B
(a) Real image Upright
(b) Virtual image Can be cast on a screen
(c) Concave mirror In front
(d) Convex mirror Behind
(e) Plane mirror Inverted

Light travels to it
Upside down
Light does not reach it
Erect
Same size

4. Complete the following ray diagrams to show the path of light.

water
glass

40◦

(a)

air
glass

50◦

(b)

glass

air

30◦

(c)

air
water

48,8◦

(d)

air
water

42◦

(e)

water

air

55◦

(f)

5. A ray of light strikes a surface at 35◦ to the surface normal. Draw a ray diagram showing
the incident ray, reflected ray and surface normal. Calculate the angles of incidence and
reflection and fill them in on your diagram.

6. Light travels from glass (n = 1,5) to acetone (n = 1,36). The angle of incidence is 25◦.
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6.1 Describe the path of light as it moves into the acetone.

6.2 Calculate the angle of refraction.

6.3 What happens to the speed of the light as it moves from the glass to the acetone?

6.4 What happens to the wavelength of the light as it moves into the acetone?

6.5 What is the name of the phenomenon that occurs at the interface between the two
media?

7. A stone lies at the bottom of a swimming pool. The water is 120 cm deep. The refractive
index of water is 1,33. How deep does the stone appear to be?

8. Light strikes the interface between air and an unknown medium with an incident angle of
32◦. The angle of refraction is measured to be 48◦. Calculate the refractive index of the
medium and identify the medium.

9. Explain what total internal reflection is and how it is used in medicine and telecommuni-
cations. Why is this technology much better to use?

10. A candle 10 cm high is placed 25 cm in front of a plane mirror. Draw a ray diagram to
show how the image is formed. Include all labels and write down the properties of the
image.

11. A virtual image, 4 cm high, is formed 3 cm from a plane mirror. Draw a labelled ray
diagram to show the position and height of the object. What is the magnification?

12. An object, 3 cm high, is placed 4 cm from a concave mirror of focal length 2 cm. Draw a
labelled ray diagram to find the position, height and properties of the image.

13. An object, 2 cm high, is placed 3 cm from a convex mirror. The magnification is 0,5.
Calculate the focal length of the mirror.
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Chapter 16

Magnetism - Grade 10

16.1 Introduction

Magnetism is a force that certain kinds of objects, which are called ‘magnetic’ objects, can exert
on each other without physically touching. A magnetic object is surrounded by a magnetic ‘field’
that gets weaker as one moves further away from the object. A second object can feel a magnetic
force from the first object because it feels the magnetic field of the first object.

Humans have known about magnetism for many thousands of years. For example, lodestone is
a magnetised form of the iron oxide mineral magnetite. It has the property of attracting iron
objects. It is referred to in old European and Asian historical records; from around 800 BCE in
Europe and around 2 600 BCE in Asia.

Interesting

Fact

teresting

Fact
The root of the English word magnet is from the Greek word magnes, probably
from Magnesia in Asia Minor, once an important source of lodestone.

16.2 Magnetic fields

A magnetic field is a region in space where a magnet or object made of magnetic material will
experience a non-contact force.

Electrons inside any object have magnetic fields associated with them. In most materials these
fields point in all directions, so the net magnetic field is zero. For example, in the plastic ball
below, the directions of the magnetic fields of the electrons (shown by the arrows) are pointing
in different directions and cancel each other out. Therefore the plastic ball is not magnetic and
has no magnetic field.

plastic ball

directions of electron magnetic fields

The electron magnetic fields point in all directions
and so there is no net (total) magnetic field for the whole ball
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In some materials (e.g. iron), called ferromagnetic materials, there are regions called domains,
where the electrons’ magnetic fields line up with each other. All the atoms in each domain
are grouped together so that the magnetic fields from their electrons point the same way. The
picture shows a piece of an iron needle zoomed in to show the domains with the electric fields
lined up inside them.

iron needle

zoomed-in part of needle

in each domain the electron magnetic fields (black arrows)
are pointing in the same direction, causing a net
magnetic field (big white arrows) in each domain

In permanent magnets, many domains are lined up, resulting in a net magnetic field. Objects
made from ferromagnetic materials can be magnetised, for example by rubbing a magnet along
the object in one direction. This causes the magnetic fields of most, or all, of the domains to
line up in one direction. As a result the object as a whole will have a net magnetic field. It
is magnetic. Once a ferromagnetic object has been magnetised, it can stay magnetic without
another magnet being nearby (i.e. without being in another magnetic field). In the picture below,
the needle has been magnetised because the magnetic fields in all the domains are pointing in
the same direction.

iron needle

zoomed-in part of needle

when the needle is magnetised, the magnetic fields
of all the domains (white arrows) point in the
same direction, causing a net magnetic field

Activity :: Investigation : Ferromagnetic materials and magnetisation

1. Find 2 paper clips. Put the paper clips close together and observe what hap-
pens.

1.1 What happens to the paper clips?

1.2 Are the paper clips magnetic?

2. Now take a permanent bar magnet and rub it once along 1 of the paper clips.
Remove the magnet and put the paper clip which was touched by the magnet
close to the other paper clip and observe what happens.

2.1 Does the untouched paper clip feel a force on it? If so, is the force
attractive or repulsive?

3. Rub the same paper clip a few more times with the bar magnet, in the same
direction as before. Put the paper clip close to the other one and observe what
happens.
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3.1 Is there any difference to what happened in step 2?

3.2 If there is a difference, what is the reason for it?

3.3 Is the paper clip which was rubbed repeatedly by the magnet now
magnetised?

3.4 What is the difference between the two paper clips at the level of
their atoms and electrons?

4. Now, find a metal knitting needle, or a plastic ruler, or other plastic object.
Rub the bar magnet along the knitting needle a few times in the same direction.
Now put the knitting needle close to the paper clips and observe what happens.

4.1 Does the knitting needle attract the paper clips?

4.2 What does this tell you about the material of the knitting needle?
Is it ferromagnetic?

5. Repeat this experiment with objects made from other materials.

5.1 Which materials appear to be ferromagnetic and which are not? Put
your answers in a table.

16.3 Permanent magnets

16.3.1 The poles of permanent magnets

Because the domains in a permanent magnet all line up in a particular direction, the magnet has
a pair of opposite poles, called north (usually shortened to N) and south (usually shortened to
S). Even if the magnet is cut into tiny pieces, each piece will still have both a N and a S pole.
These magnetic poles always occur in pairs. In nature, we never find a north magnetic pole or
south magnetic pole on its own.

S N

S N

S N S

... after breaking in half ...

Magnetic fields are different from gravitational and electric fields. In nature, positive and negative
electric charges can be found on their own, but you never find just a north magnetic pole or
south magnetic pole on its own. On the very small scale, zooming in to the size of atoms,
magnetic fields are caused by moving charges (i.e. the negatively charged electrons).

16.3.2 Magnetic attraction and repulsion

Like (identical) poles of magnets repel one another whilst unlike (opposite) poles attract. This
means that two N poles or two S poles will push away from each other while a N pole and a S
pole will be drawn towards each other.

Definition: Attraction and Repulsion
Like poles of magnets repel each other whilst unlike poles attract each other.
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Worked Example 55: Attraction and Repulsion
Question: Do you think the following magnets will repel or be attracted to
each other?

magnetS N magnetN S

Answer
Step 1 : Determine what is required
We are required to determine whether the two magnets will repel each other
or be attracted to each other.
Step 2 : Determine what is given
We are given two magnets with the N pole of one approaching the N pole
of the other.
Step 3 : Determine the conclusion
Since both poles are the same, the magnets will repel each other.

Worked Example 56: Attraction and repulsion
Question: Do you think the following magnets will repel or be attracted to
each other?

magnetN S magnetN S

Answer
Step 1 : Determine what is required
We are required to determine whether the two magnets will repel each other
or be attracted to each other.
Step 2 : Determine what is given
We are given two magnets with the N pole of one approaching the S pole
of the other.
Step 3 : Determine the conclusion
Since both poles are the different, the magnets will be attracted to each
other.

16.3.3 Representing magnetic fields

Magnetic fields can be represented using magnetic field lines starting at the North pole and
ending at the South pole. Although the magnetic field of a permanent magnet is everywhere
surrounding the magnet (in all three dimensions), we draw only some of the field lines to represent
the field (usually only a two-dimensional cross-section is shown in drawings).
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3-dimensional representation

2-dimensional representation

In areas where the magnetic field is strong, the field lines are closer together. Where the field
is weaker, the field lines are drawn further apart. The number of field lines drawn crossing a
given two-dimensional surface is referred to as the magnetic flux. The magnetic flux is used as
a measure of the strength of the magnetic field over that surface.

Important:

1. Field lines never cross.

2. Arrows drawn on the field lines indicate the direction of the field.

3. A magnetic field points from the north to the south pole of a magnet.

Activity :: Investigation : Field around a Bar Magnet
Take a bar magnet and place it on a flat surface. Place a sheet of white paper

over the bar magnet and sprinkle some iron filings onto the paper. Give the paper a
shake to evenly distribute the iron filings. In your workbook, draw the bar magnet
and the pattern formed by the iron filings. Draw the pattern formed when you rotate
the bar magnet to a different angle as shown below.

magnetN S m
ag
ne
t

N

S

m
agnet

N

S

m
ag
n
et

N
S

299



16.3 CHAPTER 16. MAGNETISM - GRADE 10

As the activity shows, one can map the magnetic field of a magnet by placing it underneath a
piece of paper and sprinkling iron filings on top. The iron filings line themselves up parallel to
the magnetic field.

Activity :: Investigation : Field around a Pair of Bar Magnets
Take two bar magnets and place them a short distance apart such that they are

repelling each other. Place a sheet of white paper over the bar magnets and sprinkle
some iron filings onto the paper. Give the paper a shake to evenly distribute the
iron filings. In your workbook, draw both the bar magnets and the pattern formed
by the iron filings. Repeat the procedure for two bar magnets attracting each other
and draw what the pattern looks like for this situation. Make a note of the shape of
the lines formed by the iron filings, as well as their size and their direction for both
arrangements of the bar magnet. What does the pattern look like when you place
both bar magnets side by side?

magnetN S magnetN SArrangement 1

magnetS N magnetN SArrangement 2

m
ag
n
et

N
S

m
ag
n
et

N
S

Arrangement 3

m
ag
n
et

N
S

m
ag
n
et

S
N

Arrangement 4

As already said, opposite poles of a magnet attract each other and bringing them together causes
their magnetic field lines to converge (come together). Like poles of a magnet repel each other
and bringing them together causes their magnetic field lines to diverge (bend out from each
other).

N NS S

Like poles repel each other

The field lines between 2 like poles diverge
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N SS N

Unlike poles attract each other

The magnetic field lines between 2 unlike poles converge

Extension: Ferromagnetism and Retentivity
Ferromagnetism is a phenomenon shown by materials like iron, nickel or cobalt.
These materials can form permanent magnets. They always magnetise so as to
be attracted to a magnet, no matter which magnetic pole is brought toward the
unmagnetised iron/nickel/cobalt.
The ability of a ferromagnetic material to retain its magnetisation after an external
field is removed is called its retentivity.
Paramagnetic materials are materials like aluminium or platinum, which become
magnetised in an external magnetic field in a similar way to ferromagnetic materials.
However, they lose their magnetism when the external magnetic field is removed.
Diamagnetism is shown by materials like copper or bismuth, which become mag-
netised in a magnetic field with a polarity opposite to the external magnetic field.
Unlike iron, they are slightly repelled by a magnet.

16.4 The compass and the earth’s magnetic field

A compass is an instrument which is used to find the direction of a magnetic field. A compass
consists of a small metal needle which is magnetised itself and which is free to turn in any
direction. Therefore, when in the presence of a magnetic field, the needle is able to line up in
the same direction as the field.

The direction of the compass arrow is the
same as the direction of the magnetic field

Interesting

Fact

teresting

Fact
Lodestone, a magnetised form of iron-oxide, was found to orientate itself in a
north-south direction if left free to rotate by suspension on a string or on a float
in water. Lodestone was therefore used as an early navigational compass.
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Compasses are mainly used in navigation to find direction on the earth. This works because the
earth itself has a magnetic field which is similar to that of a bar magnet (see the picture below).
The compass needle aligns with the earth’s magnetic field direction and points north-south.
Once you know where north is, you can figure out any other direction. A picture of a compass
is shown below:

N

S

W E

NW NE

SW SE

magnetised needle

pivot

Some animals can detect magnetic fields, which helps them orientate themselves and navigate.
Animals which can do this include pigeons, bees, Monarch butterflies, sea turtles and certain
fish.

16.4.1 The earth’s magnetic field

In the picture below, you can see a representation of the earth’s magnetic field which is very
similar to the magnetic field of a giant bar magnet like the one on the right of the picture. So
the earth has two sets of north poles and south poles: geographic poles and magnetic poles.

11.5o

Geographic North pole
Magnetic ’North’ pole

S

N

The earth’s magnetic field is thought to be caused by flowing liquid metals in the outer core
which causes electric currents and a magnetic field. From the picture you can see that the
direction of magnetic north and true north are not identical. The geographic north pole, which
is the point through which the earth’s rotation axis goes, is about 11,5o away from the direction
of the magnetic north pole (which is where a compass will point). However, the magnetic
poles shift slightly all the time.

Another interesting thing to note is that if we think of the earth as a big bar magnet, and we
know that magnetic field lines always point from north to south, then the compass tells us that
what we call the magnetic north pole is actually the south pole of the bar magnet!
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Interesting

Fact

teresting

Fact
The direction of the earth’s magnetic field flips direction about once every
200 000 years! You can picture this as a bar magnet whose north and south pole
periodically switch sides. The reason for this is still not fully understood.

The earth’s magnetic field is very important for humans and other animals on earth because it
stops electrically charged particles emitted by the sun from hitting the earth and us. Charged
particles can also damage and cause interference with telecommunications (such as cell phones).
The stream of charged particles (mainly protons and electrons) coming from the sun is called the
solar wind. These particles spiral in the earth’s magnetic field towards the poles. If they collide
with particles in the earth’s atmosphere they sometimes cause red or green lights or a glow in
the sky which is called the aurora. This happens close to the north and south pole and so we
cannot see the aurora from South Africa.

16.5 Summary

1. Magnets have two poles - North and South.

2. Some substances can be easily magnetised.

3. Like poles repel each other and unlike poles attract each other.

4. The Earth also has a magnetic field.

5. A compass can be used to find the magnetic north pole and help us find our direction.

16.6 End of chapter exercises

1. Describe what is meant by the term magnetic field.

2. Use words and pictures to explain why permanent magnets have a magnetic field around
them. Refer to domains in your explanation.

3. What is a magnet?

4. What happens to the poles of a magnet if it is cut into pieces?

5. What happens when like magnetic poles are brought close together?

6. What happens when unlike magnetic poles are brought close together?

7. Draw the shape of the magnetic field around a bar magnet.

8. Explain how a compass indicates the direction of a magnetic field.

9. Compare the magnetic field of the Earth to the magnetic field of a bar magnet using words
and diagrams.

10. Explain the difference between the geographical north pole and the magnetic north pole
of the Earth.

11. Give examples of phenomena that are affected by Earth’s magnetic field.

12. Draw a diagram showing the magnetic field around the Earth.
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Chapter 17

Electrostatics - Grade 10

17.1 Introduction

Electrostatics is the study of electric charge which is static (not moving).

17.2 Two kinds of charge

All objects surrounding us (including people!) contain large amounts of electric charge. There
are two types of electric charge: positive charge and negative charge. If the same amounts
of negative and positive charge are brought together, they neutralise each other and there is no
net charge. Neutral objects are objects which contain equal amouts of positive and negative
charges. However, if there is a little bit more of one type of charge than the other on the object
then the object is said to be electrically charged. The picture below shows what the distribution
of charges might look like for a neutral, positively charged and negatively charged object.
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There are:

6 positive charges and
6 negative charges

6 + (-6) = 0

There is zero net charge:

The object is neutral

8 positive charges and
6 negative charges

8 + (-6) = 2

The net charge is +2

The object is positively charged

6 positive charges and
9 negative charges

6 + (-9) = -3

The net charge is -3

The object is negatively charged

17.3 Unit of charge

Charge is measured in units called coulombs (C). A coulomb of charge is a very large charge.
In electrostatics we therefore often work with charge in microcoulombs (1 µC = 1 × 10−6 C)
and nanocoulombs (1 nC = 1× 10−9 C).

17.4 Conservation of charge

Objects may become charged in many ways, including by contact with or being rubbed by other
objects. This means that they can gain extra negative or positive charge. Charging happens
when you, for example, rub your feet against the carpet. When you then touch something metal-
lic or another person, you feel a shock as the excess charge that you have collected is discharged.
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Important: Charge, like energy, cannot be created or destroyed. We say that charge is
conserved.

When you rub your feet against the carpet, negative charge is transferred to you from the carpet.
The carpet will then become positively charged by the same amount.

Another example is to take two neutral objects such as a plastic ruler and a cotton cloth
(handkerchief). To begin, the two objects are neutral (i.e. have the same amounts of positive
and negative charge).

+++++++++- - - - - - - - -
+

+
+

+

+
-

-

-

-

-

The ruler has 9 postive charges and

The neutral cotton cloth has
5 positive charges and
5 negative charges

The total number of charges is:

(9+5)=14 positive charges
(9+5)=14 negative charges

9 negative charges

BEFORE rubbing:

Now, if the cotton cloth is used to rub the ruler, negative charge is transferred from the cloth to
the ruler. The ruler is now negatively charged and the cloth is positively charged. If you count
up all the positive and negative charges at the beginning and the end, there are still the same
amount. i.e. total charge has been conserved!
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+

+
+

+

+
-
-

-

-
-

The ruler has 9 postive charges and

The cotton cloth has
5 positive charges and
2 negative charges.

The total number of charges is:

(9+5)=14 positive charges
(12+2)=14 negative charges

12 negative charges

AFTER rubbing:

It is now positively charged.

It is now negatively charged.

Charges have been transferred from the
cloth to the ruler BUT total charge has
been conserved!

Note that in this example the numbers are made up to be easy to calculate. In the real world
only a tiny fraction of the charges would move from one object to the other, but the total charge
would still be conserved.

17.5 Force between Charges

The force exerted by non-moving (static) charges on each other is called the electrostatic force.
The electrostatic force between:

• like charges are repulsive

• opposite (unlike) charges are attractive.

In other words, like charges repel each other while opposite charges attract each other. This is
different to the gravitational force which is only attractive.

F F
- +

attractive force

F F
- -

repulsive force

F F
+ +

repulsive force
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The closer together the charges are, the stronger the electrostatic force between them.

weaker repulsive force

F F
+ + stronger repulsive force

F F+ +

(shorter distance between charges)

(longer distance between charges)

Activity :: Experiment : Electrostatic Force

You can easily test that like charges repel and unlike charges attract each other
by doing a very simple experiment.

Take a glass rod and rub it with a piece of silk, then hang it from its middle
with a piece string so that it is free to move. If you then bring another glass rod
which you have also charged in the same way next to it, you will see the rod on the
string turn away from the rod in your hand i.e. it is repelled. If, however, you take
a plastic rod, rub it with a piece of fur and then bring it close to the rod on the
string, you will see the rod on the string turn towards the rod in your hand i.e. it is
attracted.
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This happens because when you rub the glass with silk, tiny amounts of negative
charge are transferred from the glass onto the silk, which causes the glass to have
less negative charge than positive charge, making it positively charged. When you
rub the plastic rod with the fur, you transfer tiny amounts of negative charge onto
the rod and so it has more negative charge than positive charge on it, making it
negatively charged.
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Worked Example 57: Application of electrostatic forces
Question: Two charged metal spheres hang from strings and are free to
move as shown in the picture below. The right hand sphere is positively
charged. The charge on the left hand sphere is unknown.

+?

The left sphere is now brought close to the right sphere.

1. If the left hand sphere swings towards the right hand
sphere, what can you say about the charge on the left
sphere and why?

2. If the left hand sphere swings away from the right hand
sphere, what can you say about the charge on the left
sphere and why?

Answer
Step 1 : Identify what is known and what question you need to
answer:
In the first case, we have a sphere with positive charge which is attracting
the left charged sphere. We need to find the charge on the left sphere.
Step 2 : What concept is being used?
We are dealing with electrostatic forces between charged objects. Therefore,
we know that like charges repel each other and opposite charges attract each
other.
Step 3 : Use the concept to find the solution

1. In the first case, the positively charged sphere is attracting
the left sphere. Since an electrostatic force between unlike
charges is attractive, the left sphere must be negatively
charged.

2. In the second case, the positively charged sphere repels the
left sphere. Like charges repel each other. Therefore, the
left sphere must now also be positively charged.

Extension: Electrostatic Force
The electrostatic force determines the arrangement of charge on the surface of con-
ductors. This is possible because charges can move inside a conductive material.
When we place a charge on a spherical conductor the repulsive forces between the
individual like charges cause them to spread uniformly over the surface of the sphere.
However, for conductors with non-regular shapes, there is a concentration of charge
near the point or points of the object.

-
-

---
-
-
- - -

-

--
-

--
-

-----
-

- -
-
--
-
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This collection of charge can actually allow charge to leak off the conductor if the
point is sharp enough. It is for this reason that buildings often have a lightning rod
on the roof to remove any charge the building has collected. This minimises the
possibility of the building being struck by lightning. This “spreading out” of charge
would not occur if we were to place the charge on an insulator since charge cannot
move in insulators.

Interesting

Fact

teresting

Fact
The word ‘electron’ comes from the Greek word for amber. The ancient Greeks
observed that if you rubbed a piece of amber, you could use it to pick up bits of
straw.

17.6 Conductors and insulators

All atoms are electrically neutral i.e. they have the same amounts of negative and positive charge
inside them. By convention, the electrons carry negative charge and the protons carry positive
charge. The basic unit of charge, called the elementary charge, e, is the amount of charge carried
by one electron.

All the matter and materials on earth are made up of atoms. Some materials allow electrons to
move relatively freely through them (e.g. most metals, the human body). These materials are
called conductors.

Other materials do not allow the charge carriers, the electrons, to move through them (e.g.
plastic, glass). The electrons are bound to the atoms in the material. These materials are called
non-conductors or insulators.

If an excess of charge is placed on an insulator, it will stay where it is put and there will be a
concentration of charge in that area of the object. However, if an excess of charge is placed on
a conductor, the like charges will repel each other and spread out over the outside surface of the
object. When two conductors are made to touch, the total charge on them is shared between
the two. If the two conductors are identical, then each conductor will be left with half of the
total charge.

Extension: Charge and electrons
The basic unit of charge, namely the elementary charge is carried by the electron
(equal to 1.602×10−19 C!). In a conducting material (e.g. copper), when the atoms
bond to form the material, some of the outermost, loosely bound electrons become
detached from the individual atoms and so become free to move around. The charge
carried by these electrons can move around in the material. In insulators, there are
very few, if any, free electrons and so the charge cannot move around in the material.
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Worked Example 58: Conducting spheres and movement of charge
Question: I have 2 charged metal conducting spheres which are identical
except for having different charge. Sphere A has a charge of -5 nC and
sphere B has a charge of -3 nC. I then bring the spheres together so that
they touch each other. Afterwards I move the two spheres apart so that
they are no longer touching.

1. What happens to the charge on the two spheres?

2. What is the final charge on each sphere?

Answer
Step 1 : Identify what is known and what question/s we need to
answer:
We have two identical negatively charged conducting spheres which are
brought together to touch each other and then taken apart again. We
need to explain what happens to the charge on each sphere and what the
final charge on each sphere is after they are moved apart.
Step 2 : What concept is being used?
We know that the charge carriers in conductors are free to move around and
that charge on a conductor spreads itself out on the surface of the conductor.
Step 3 : Use the concept to find the answer

1. When the two conducting spheres are brought together to
touch, it is as though they become one single big conduc-
tor and the total charge of the two spheres spreads out
across the whole surface of the touching spheres. When
the spheres are moved apart again, each one is left with
half of the total original charge.

2. Before the spheres touch, the total charge is: -5 nC + (-3)
nC = -8 nC. When they touch they share out the -8 nC
across their whole surface. When they are removed from
each other, each is left with half of the original charge:

−8 nC /2 = −4 nC

on each sphere.

17.6.1 The electroscope

The electroscope is a very sensitive instrument which can be used to detect electric charge. A
diagram of a gold leaf electroscope is shown the figure below. The electroscope consists of a
glass container with a metal rod inside which has 2 thin pieces of gold foil attached. The other
end of the metal rod has a metal plate attached to it outside the glass container.
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The electroscope detects charge in the following way: A charged object, like the positively
charged rod in the picture, is brought close to (but not touching) the neutral metal plate of
the electroscope. This causes negative charge in the gold foil, metal rod, and metal plate, to
be attracted to the positive rod. Because the metal (gold is a metal too!) is a conductor, the
charge can move freely from the foil up the metal rod and onto the metal plate. There is now
more negative charge on the plate and more positive charge on the gold foil leaves. This is
called inducing a charge on the metal plate. It is important to remember that the electroscope
is still neutral (the total positive and negative charges are the same), the charges have just been
induced to move to different parts of the instrument! The induced positive charge on the gold
leaves forces them apart since like charges repel! This is how we can tell that the rod is charged.
If the rod is now moved away from the metal plate, the charge in the electroscope will spread
itself out evenly again and the leaves will fall down because there will no longer be an induced
charge on them.

Grounding

If you were to bring the charged rod close to the uncharged electroscope, and then you touched
the metal plate with your finger at the same time, this would cause charge to flow up from the
ground (the earth), through your body onto the metal plate. Connecting to the earth so charge
flows is called grounding. The charge flowing onto the plate is opposite to the charge on the
rod, since it is attracted to the charge on the rod. Therefore, for our picture, the charge flowing
onto the plate would be negative. Now that charge has been added to the electroscope, it is no
longer neutral, but has an excess of negative charge. Now if we move the rod away, the leaves
will remain apart because they have an excess of negative charge and they repel each other. If
we ground the electroscope again (this time without the charged rod nearby), the excess charge
will flow back into the earth, leaving it neutral.
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17.7 Attraction between charged and uncharged objects

17.7.1 Polarisation of Insulators

Unlike conductors, the electrons in insulators (non-conductors) are bound to the atoms of the
insulator and cannot move around freely through the material. However, a charged object can
still exert a force on a neutral insulator due to a phenomenon called polarisation.
If a positively charged rod is brought close to a neutral insulator such as polystyrene, it can
attract the bound electrons to move round to the side of the atoms which is closest to the rod
and cause the positive nuclei to move slightly to the opposite side of the atoms. This process
is called polarisation. Although it is a very small (microscopic) effect, if there are many atoms
and the polarised object is light (e.g. a small polystyrene ball), it can add up to enough force
to cause the object to be attracted onto the charged rod. Remember, that the polystyrene is
only polarised, not charged. The polystyrene ball is still neutral since no charge was added or
removed from it. The picture shows a not-to-scale view of the polarised atoms in the polystyrene
ball:
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Some materials are made up of molecules which are already polarised. These are molecules which
have a more positive and a more negative side but are still neutral overall. Just as a polarised
polystyrene ball can be attracted to a charged rod, these materials are also affected if brought
close to a charged object.

Water is an example of a substance which is made of polarised molecules. If a positively charged
rod is brought close to a stream of water, the molecules can rotate so that the negative sides all
line up towards the rod. The stream of water will then be attracted to the rod since opposite
charges attract.

17.8 Summary

1. Objects can be positively charged, negatively charged or neutral.

2. Objects that are neutral have equal numbers of positive and negative charge.

3. Unlike charges are attracted to each other and like charges are repelled from each other.

4. Charge is neither created nor destroyed, it can only be transferred.

5. Charge is measured in coulombs (C).

6. Conductors allow charge to move through them easily.

7. Insulators do not allow charge to move through them easily.
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17.9 End of chapter exercise

1. What are the two types of charge called?

2. Provide evidence for the existence of two types of charge.

3. Fill in the blanks: The electrostatic force between like charges is while
the electrostatic force between opposite charges is .

4. I have two positively charged metal balls placed 2 m apart.

4.1 Is the electrostatic force between the balls attractive or repulsive?

4.2 If I now move the balls so that they are 1 m apart, what happens to the strength of
the electrostatic force between them?

5. I have 2 charged spheres each hanging from string as shown in the picture below.

++

Choose the correct answer from the options below: The spheres will

5.1 swing towards each other due to the attractive electrostatic force between them.

5.2 swing away from each other due to the attractive electrostatic force between them.

5.3 swing towards each other due to the repulsive electrostatic force between them.

5.4 swing away from each other due to the repulsive electrostatic force between them.

6. Describe how objects (insulators) can be charged by contact or rubbing.

7. You are given a perspex ruler and a piece of cloth.

7.1 How would you charge the perspex ruler?

7.2 Explain how the ruler becomes charged in terms of charge.

7.3 How does the charged ruler attract small pieces of paper?

8. [IEB 2005/11 HG] An uncharged hollow metal sphere is placed on an insulating stand. A
positively charged rod is brought up to touch the hollow metal sphere at P as shown in
the diagram below. It is then moved away from the sphere.

P
+++

Where is the excess charge distributed on the sphere after the rod has been removed?

8.1 It is still located at point P where the rod touched the sphere.

8.2 It is evenly distributed over the outer surface of the hollow sphere.

8.3 It is evenly distributed over the outer and inner surfaces of the hollow sphere.

8.4 No charge remains on the hollow sphere.

9. What is the process called where molecules in an uncharged object are caused to align in
a particular direction due to an external charge?

10. Explain how an uncharged object can be attracted to a charged object. You should use
diagrams to illustrate your answer.

11. Explain how a stream of water can be attracted to a charged rod.
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Chapter 18

Electric Circuits - Grade 10

18.1 Electric Circuits

People all over the world depend on electricity to provide power for most appliances in the home
and at work. For example, flourescent lights, electric heating and cooking (on electric stoves),
all depend on electricity to work. To realise just how big an impact electricity has on our daily
lives, just think about what happens when there is a power failure or load shedding.

Activity :: Discussion : Uses of electricity
With a partner, take the following topics and, for each topic, write down at least 5
items/appliances/machines which need electricity to work. Try not to use the same
item more than once.

• At home

• At school

• At the hospital

• In the city

Once you have finished making your lists, compare with the lists of other people in
your class. (Save your lists somewhere safe for later because there will be another
activity for which you’ll need them.)
When you start comparing, you should notice that there are many different items
which we use in our daily lives which rely on electricity to work!

Important: Safety Warning: We believe in experimenting and learning about physics
at every opportunity, BUT playing with electricity and electrical appliances can be EX-
TREMELY DANGEROUS! Do not try to build home made circuits alone. Make sure you
have someone with you who knows if what you are doing is safe. Normal electrical outlets
are dangerous. Treat electricity with respect in your everyday life. Do not touch exposed
wires and do not approach downed power lines.

18.1.1 Closed circuits

In the following activity we will investigate what is needed to cause charge to flow in an electric
circuit.
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Activity :: Experiment : Closed circuits
Aim:
To determine what is required to make electrical charges flow. In this experiment,
we will use a lightbulb to check whether electrical charge is flowing in the circuit or
not. If charge is flowing, the lightbulb should glow. On the other hand, if no charge
is flowing, the lightbulb will not glow.
Apparatus:
You will need a small lightbulb which is attached to a metal conductor (e.g. a bulb
from a school electrical kit), some connecting wires and a battery.
Method:
Take the apparatus items and try to connect them in a way that you cause the light
bulb to glow (i.e. charge flows in the circuit).
Questions:

1. Once you have arranged your circuit elements to make the lightbulb glow, draw
your circuit.

2. What can you say about how the battery is connected? (i.e. does it have one
or two connecting leads attached? Where are they attached?)

3. What can you say about how the light bulb is connected in your circuit? (i.e.
does it connect to one or two connecting leads, and where are they attached?)

4. Are there any items in your circuit which are not attached to something? In
other words, are there any gaps in your circuit?

Write down your conclusion about what is needed to make an electric circuit work
and charge to flow.

In the experiment above, you will have seen that the light bulb only glows when there is a closed
circuit i.e. there are no gaps in the circuit and all the circuit elements are connected in a closed
loop. Therefore, in order for charges to flow, a closed circuit and an energy source (in this case
the battery) are needed. (Note: you do not have to have a lightbulb in the circuit! We used this
as a check that charge was flowing.)

Definition: Electric circuit
An electric circuit is a closed path (with no breaks or gaps) along which electrical charges
(electrons) flow powered by an energy source.

18.1.2 Representing electric circuits

Components of electrical circuits

Some common elements (components) which can be found in electrical circuits include light
bulbs, batteries, connecting leads, switches, resistors, voltmeters and ammeters. You will learn
more about these items in later sections, but it is important to know what their symbols are and
how to represent them in circuit diagrams. Below is a table with the items and their symbols:

Circuit diagrams

Definition: Representing circuits
A physical circuit is the electric circuit you create with real components.
A circuit diagram is a drawing which uses symbols to represent the different components
in the physical circuit.
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Component Symbol Usage

light bulb glows when charge moves through it

battery provides energy for charge to move

switch allows a circuit to be open or closed

resistor resists the flow of charge
OR

voltmeter V measures potential difference

ammeter A measures current in a circuit

connecting lead connects circuit elements together

We use circuit diagrams to represent circuits because they are much simpler and more general
than drawing the physical circuit because they only show the workings of the electrical compo-
nents. You can see this in the two pictures below. The first picture shows the physical circuit
for an electric torch. You can see the light bulb, the batteries, the switch and the outside plastic
casing of the torch. The picture is actually a cross-section of the torch so that we can see inside
it.

Switch

Batteries

Bulb

Figure 18.1: Physical components of an electric torch. The dotted line shows the path of the
electrical circuit.

Below is the circuit diagram for the electric torch. Now the light bulb is represented by its
symbol, as are the batteries, the switch and the connecting wires. It is not necessary to show
the plastic casing of the torch since it has nothing to do with the electric workings of the torch.
You can see that the circuit diagram is much simpler than the physical circuit drawing!

Series and parallel circuits

There are two ways to connect electrical components in a circuit: in series or in parallel.
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2 Batteries

On/off switch

Lightbulb

Figure 18.2: Circuit diagram of an electric torch.

Definition: Series circuit
In a series circuit, the charge flowing from the battery can only flow along a single path to
return to the battery.

Definition: Parallel circuit
In a parallel circuit, the charge flowing from the battery can flow along multiple paths to
return to the battery.

The picture below shows a circuit with three resistors connected in series on the left and a
circuit with three resistors connected in parallel on the right. In the series circiut, the charge
path from the battery goes through every component before returning to the battery. In the
parallel circuit, there is more than one path for the charge to flow from the battery through one
of the components and back to the battery.

R1

R3

R
2

R
2

R
1

R
3

3 resistors in a series circuit 3 resistors in a parallel circuit

Worked Example 59: Drawing circuits I
Question: Draw the circuit diagram for a circuit which has the following
components:

1. 1 battery

2. 1 lightbulb connected in series

3. 2 resistors connected in parallel

Answer
Step 1 : Identify the components and their symbols and draw accord-
ing to the instructions:
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battery

Worked Example 60: Drawing circuits II
Question: Draw the circuit diagram for a circuit which has the following
components:

1. 3 batteries in series

2. 1 lightbulb connected in parallel with 1 resistor

3. a switch in series with the batteries

Answer
Step 1 : Identify the symbol for each component and draw according
to the instructions:

light bulb

3 batteries

resistor

switch

Exercise: Circuits

1. Using physical components, set up the physical circuit which is described by
the circuit diagram below:
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2. Using physical components, set up a closed circuit which has one battery and
a light bulb in series with a resistor.

2.1 Draw the physical circuit.

2.2 Draw the resulting circuit diagram.

2.3 How do you know that you have built a closed circuit? (What happens to
the light bulb?)

2.4 If you add one more resistor to your circuit (also in series), what do you
notice? (What happens to the light from the light bulb?)

2.5 Draw the new circuit diagram which includes the second resistor.

3. Draw the circuit diagram for the following circuit: 2 batteries and a switch in
series, and 1 lightbulb which is in parallel with two resistors.

3.1 Now use physical components to set up the circuit.

3.2 What happens when you close the switch? What does does this mean
about the circuit?

3.3 Draw the physical circuit.

Activity :: Discussion : Alternative Energy
At the moment, most electric power is produced by burning fossil fuels such as coal
and oil. In South Africa, our main source of electric power is coal burning power
stations. (We also have one nuclear power plant called Koeberg in the Western
Cape). However, burning fossil fuels releases large amounts of pollution into the
earth’s atmosphere and contributes to global warming. Also, the earth’s fossil fuel
reserves (especially oil) are starting to run low. For these reasons, people all across
the world are working to find alternative/other sources of energy and on ways to
conserve/save energy. Other sources of energy include wind power, solar power (from
the sun), hydro-electric power (from water, e.g. dammed rivers) among others.
With a partner, take out the lists you made earlier of the item/appliances/machines
which used electricity in the following environments. For each item, try to think of
an alternative AND a way to conserve or save power.
For example, if you had a flourescent light as an item used in the home, then:

• Alternative: use candles at supper time to reduce electricity consumption

• Conservation: turn off lights when not in a room, or during the day.

Topics:

• At home

• At school

• At the hospital

• In the city

Once you have finished making your lists, compare with the lists of other people in
your class.

18.2 Potential Difference

18.2.1 Potential Difference

When a circuit is connected and complete, charge can move through the circuit. Charge will not
move unless there is a reason, a force. Think of it as though charge is at rest and something
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has to push it along. This means that work needs to be done to make charge move. A force
acts on the charges, doing work, to make them move. The force is provided by the battery in
the circuit.

We call the moving charge ”current” and we will talk about this later.

The position of the charge in the circuit tells you how much potential energy it has because of
the force being exerted on it. This is like the force from gravity, the higher an object is above
the ground (position) the more potential energy it has.

The amount of work to move a charge from one point to another point is how much the potential
energy has changed. This is the difference in potential energy, called potential difference. Notice
that it is a difference between the value of potential energy at two points so we say that potential
difference is measured between or across two points. We do not say potential difference through
something.

Definition: Potential Difference
Electrical potential difference as the difference in electrical potential energy per unit charge
between two points. The units of potential difference are the volta (V).

anamed after the Italian physicist Alessandro Volta (1745–1827)

The units are volt (V), which is the same as joule per coulomb, the amount of work done per
unit charge. Electrical potential difference is also called voltage.

18.2.2 Potential Difference and Parallel Resistors

When resistors are connected in parallel the start and end points for all the resistors are the same.
These points have the same potential energy and so the potential difference between them is the
same no matter what is put in between them. You can have one, two or many resistors between
the two points, the potential difference will not change. You can ignore whatever components
are between two points in a circuit when calculating the difference between the two points.

Look at the following circuit diagrams. The battery is the same in all cases, all that changes is
more resistors are added between the points marked by the black dots. If we were to measure
the potential difference between the two dots in these circuits we would get the same answer for
all three cases.

b

b

b

b

b

b

Lets look at two resistors in parallel more closely. When you construct a circuit you use wires and
you might think that measuring the voltage in different places on the wires will make a difference.
This is not true. The potential difference or voltage measurement will only be different if you
measure a different set of components. All points on the wires that have no circuit components
between them will give you the same measurements.

All three of the measurements shown in the picture below (i.e. A–B, C–D and E–F) will give you
the same voltage. The different measurement points on the left have no components between
them so there is no change in potential energy. Exactly the same applies to the different points
on the right. When you measure the potential difference between the points on the left and right
you will get the same answer.
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A B

C D
E F

zooming in:

E F
A B

C D

b b

b b

b b

V

V

V

V = 5 V

V = 5 V

V = 5 V

b

b b

b

bb

18.2.3 Potential Difference and Series Resistors

When resistors are in series, one after the other, there is a potential difference across each
resistor. The total potential difference across a set of resistors in series is the sum of the
potential differences across each of the resistors in the set. This is the same as falling a large
distance under gravity or falling that same distance (difference) in many smaller steps. The total
distance (difference) is the same.

Look at the circuits below. If we measured the potential difference between the black dots in
all of these circuits it would be the same just like we saw above. So we now know the total
potential difference is the same across one, two or three resistors. We also know that some work
is required to make charge flow through each one, each is a step down in potential energy. These
steps add up to the total drop which we know is the difference between the two dots.

b

b

b

b

b

b

Let us look at this in a bit more detail. In the picture below you can see what the different
measurements for 3 identical resistors in series could look like. The total voltage across all three
resistors is the sum of the voltages across the individual resistors.

b b b b b b

V V V

V

V = 5V V = 5V V = 5V

V = 15V

zooming in
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18.2.4 Ohm’s Law

The voltage is the change in potential energy or work done when charge moves between two
points in the circuit. The greater the resistance to charge moving the more work that needs to
be done. The work done or voltage thus depends on the resistance. The potential difference is
proportional to the resistance.

Definition: Ohm’s Law
Voltage across a circuit component is proportional to the resistance of the component.

Use the fact that voltage is proportional to resistance to calculate what proportion of the total
voltage of a circuit will be found across each circuit element.

b

b

V1

b

b

V1

V2

b

b

V2

V1

V3

We know that the total voltage is equal to V1 in the first circuit, to V1 + V2 in the second
circuit and V1 + V2 + V3 in the third circuit.

We know that the potential energy lost across a resistor is proportional to the resistance of the
component. The total potential difference is shared evenly across the total resistance of the
circuit. This means that the potential difference per unit of resistance is

Vper unit of resistance =
Vtotal

Rtotal

Then the voltage across a resistor is just the resistance times the potential difference per unit of
resistance

Vresistor = Rresistor ·
Vtotal

Rtotal

.

18.2.5 EMF

When you measure the potential difference across (or between) the terminals of a battery you
are measuring the “electromotive force” (emf) of the battery. This is how much potential energy
the battery has to make charges move through the circuit. This driving potential energy is equal
to the total potential energy drops in the circuit. This means that the voltage across the battery
is equal to the sum of the voltages in the circuit.

We can use this information to solve problems in which the voltages across elements in a circuit
add up to the emf.

EMF = Vtotal

Worked Example 61: Voltages I

Question:
What is the voltage
across the resistor in
the circuit shown?

2V V1
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Answer
Step 1 : Check what you have and the units
We have a circuit with a battery and one resistor. We know the voltage
across the battery. We want to find that voltage across the resistor.

Vbattery = 2V

Step 2 : Applicable principles
We know that the voltage across the battery must be equal to the total
voltage across all other circuit components.

Vbattery = Vtotal

There is only one other circuit component, the resistor.

Vtotal = V1

This means that the voltage across the battery is the same as the voltage
across the resistor.

Vbattery = Vtotal = V1

Vbattery = Vtotal = V1

V1 = 2V

Worked Example 62: Voltages II

Question:

What is the voltage
across the unknown re-
sistor in the circuit
shown?

b

b

2V

VB = 1V

VA

Answer
Step 1 : Check what you have and the units
We have a circuit with a battery and two resistors. We know the voltage
across the battery and one of the resistors. We want to find that voltage
across the resistor.

Vbattery = 2V

VA = 1V

Step 2 : Applicable principles
We know that the voltage across the battery must be equal to the total
voltage across all other circuit components that are in series.

Vbattery = Vtotal

The total voltage in the circuit is the sum of the voltages across the individual
resistors

Vtotal = VA + VB

Using the relationship between the voltage across the battery and total volt-
age across the resistors

Vbattery = Vtotal
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Vbattery = V1 + Vresistor

2V = V1 + 1V

V1 = 1V

Worked Example 63: Voltages III

Question:

What is the voltage
across the unknown re-
sistor in the circuit
shown?

7V

VC = 4V

VB

VA = 1V

Answer
Step 1 : Check what you have and the units
We have a circuit with a battery and three resistors. We know the voltage
across the battery and two of the resistors. We want to find that voltage
across the unknown resistor.

Vbattery = 7V

Vknown = VA + VC

= 1V + 4V

Step 2 : Applicable principles
We know that the voltage across the battery must be equal to the total
voltage across all other circuit components that are in series.

Vbattery = Vtotal

The total voltage in the circuit is the sum of the voltages across the individual
resistors

Vtotal = VB + Vknown

Using the relationship between the voltage across the battery and total volt-
age across the resistors

Vbattery = Vtotal

Vbattery = VB + Vknown

7V = VB + 5V

VB = 2V
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Worked Example 64: Voltages IV

Question:

What is the voltage
across the parallel
resistor combination
in the circuit shown?
Hint: the rest of the
circuit is the same as
the previous problem.

7V

4V

1V

Answer
Step 1 : Quick Answer
The circuit is the same as the previous example and we know that the
voltage difference between two points in a circuit does not depend on what
is between them so the answer is the same as above Vparallel = 2V.
Step 2 : Check what you have and the units - long answer
We have a circuit with a battery and five resistors (two in series and three in
parallel). We know the voltage across the battery and two of the resistors.
We want to find that voltage across the parallel resistors, Vparallel.

Vbattery = 7V

Vknown = 1V + 4V

Step 3 : Applicable principles
We know that the voltage across the battery must be equal to the total
voltage across all other circuit components.

Vbattery = Vtotal

Voltages only add for components in series. The resistors in parallel can be
thought of as a single component which is in series with the other compo-
nents and then the voltages can be added.

Vtotal = Vparallel + Vknown

Using the relationship between the voltage across the battery and total volt-
age across the resistors

Vbattery = Vtotal

Vbattery = Vparallel + Vknown

7V = V1 + 5V

Vparallel = 2V

18.3 Current

18.3.1 Flow of Charge

We have been talking about moving charge. We need to be able to deal with numbers. How
much charge is moving, how fast is it moving? The concept that represents this information is
called current. Current allows us to quantify the movement of charge.
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When we talk about current we talk about how much charge moves past a fixed point in circuit
in one second. Think of charges being pushed around the circuit by the battery, there are charges
in the wires but unless there is a battery they won’t move. When one charge moves the charges
next to it also move. They keep their spacing as if you had a tube of marbles like in this picture.

marble marble

If you push one marble into the tube one must come out the other side. If you look at any point
in the tube and push one marble into the tube, one marble will move past the point you are
looking at. This is similar to charges in the wires of a circuit.

If one charge moves they all move and the same number move at every point in the circuit. This
is due to the conservation of charge.

18.3.2 Current

Now that we’ve thought about the moving charges and visualised what is happening we need to
get back to quantifying moving charge. I’ve already told you that we call moving charge current
but we still need to define it precisely.

Definition: Current
Current is the rate at which charges moves past a fixed point in a circuit. We use the
symbol I to show current and it is measured in amperes (A). One ampere is one coulomb
of charge moving in one second.

I =
Q

∆t

When current flows in a circuit we show this on a diagram by adding arrows. The arrows show
the direction of flow in a circuit. By convention we say that charge flows from the positive
terminal on a battery to the negative terminal. We measure current with an ammeter

18.3.3 Series Circuits

In a series circuit, the charge has a single path from the battery, returning to the battery.

E

R

R

R

The arrows in this picture show you the direction that charge will flow in the circuit. They don’t
show you much charge will flow, only the direction.
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Interesting

Fact

teresting

Fact
Benjamin Franklin made a guess about the direction of charge flow when rubbing
smooth wax with rough wool. He thought that the charges flowed from the wax to
the wool (i.e. from positive to negative) which was opposite to the real direction.
Due to this, electrons are said to have a negative charge and so objects which Ben
Franklin called “negative” (meaning a shortage of charge) really have an excess
of electrons. By the time the true direction of electron flow was discovered, the
convention of “positive” and “negative” had already been so well accepted in the
scientific world that no effort was made to change it.

Important: A battery does not produce the same amount of current no matter what is
connected to it. While the voltage produced by a battery is constant, the amount of current
supplied depends on what is in the circuit.

How does the current through the battery in a circuit with several resistors in series compare to
the current in a circuit with a single resistor (assuming all the resistors are the same)?

Activity :: Experiment : Current in Series Circuits

Aim:

To determine the effect of multiple resistors on current in a circuit

Apparatus:

• Battery

• Resistors

• Light bulb

• Wires

Method:

1. Construct the following circuits

2. Rank the three circuits in terms of the brightness of the bulb.

Conclusions:

The brightness of the bulb is an indicator of how much current is flowing. If the
bulb gets brighter because of a change then more current is flowing. If the bulb gets
dimmer less current is flowing. You will find that the more resistors you have the
dimmer the bulb.
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A A

V=2 V V=2 V

1Ω 1Ω 1Ω

I = 2 A I = 1 A

This circuit has ahigher
resistance and therefore

a lower current

This circuit has alower
resistance and therefore

a higher current

18.3.4 Parallel Circuits

RRE

How does the current through the battery in a circuit with several resistors in parallel compare
to the current in a circuit with a single resistor?

Activity :: Experiment : Current in Series Circuits
Aim:
To determine the effect of multiple resistors on current in a circuit
Apparatus:

• Battery

• Resistors

• Light bulb

• Wires

Method:

1. Construct the following circuits
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2. Rank the three circuits in terms of the brightness of the bulb.

Conclusions:
The brightness of the bulb is an indicator of how much current is flowing. If the
bulb gets brighter because of a change then more current is flowing. If the bulb gets
dimmer less current is flowing. You will find that the more resistors you have the
brighter the bulb.

Why is this the case? Why do more resistors make it easier for charge to flow in the circuit?
It is because they are in parallel so there are more paths for charge to take to move. You can
think of it like a highway with more lanes, or the tube of marbles splitting into multiple parallel
tubes. The more branches there are, the easier it is for charge to flow. You will learn more about
the total resistance of parallel resistors later but always remember that more resistors in parallel
mean more pathways. In series the pathways come one after the other so it does not make it
easier for charge to flow.

A A

V=2 V V=2 V

1 Ω
1 Ω

I = 2 A I = 4 A

1 Ω

the 2 resistors in parallel result in a

lower total resistance and therefore
a higher current in the circuit

18.4 Resistance

18.4.1 What causes resistance?

We have spoken about resistors that reduce the flow of charge in a conductor. On a microscopic
level, electrons moving through the conductor collide with the particles of which the conductor
(metal) is made. When they collide, they transfer kinetic energy. The electrons therefore lose
kinetic energy and slow down. This leads to resistance. The transferred energy causes the resistor
to heat up. You can feel this directly if you touch a cellphone charger when you are charging a
cell phone - the charger gets warm because its circuits have some resistors in them!

Definition: Resistance
Resistance slows down the flow of charge in a circuit. We use the symbol R to show
resistance and it is measured in units called Ohms with the symbol Ω.

1 Ohm = 1
Volt

Ampere
.

All conductors have some resistance. For example, a piece of wire has less resistance than a light
bulb, but both have resistance. A lightbulb is a very thin wire surrounded by a glass housing
The high resistance of the filament (small wire) in a lightbulb causes the electrons to transfer a
lot of their kinetic energy in the form of heat1. The heat energy is enough to cause the filament

1Flourescent lightbulbs do not use thin wires; they use the fact that certain gases glow when a current flows
through them. They are much more efficient (much less resistance) than lightbulbs.
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to glow white-hot which produces light. The wires connecting the lamp to the cell or battery
hardly even get warm while conducting the same amount of current. This is because of their
much lower resistance due to their larger cross-section (they are thicker).

An important effect of a resistor is that it converts electrical energy into other forms of heat
energy. Light energy is a by-product of the heat that is produced.

Interesting

Fact

teresting

Fact
There is a special type of conductor, called a superconductor that has no
resistance, but the materials that make up all known superconductors only start
superconducting at very low temperatures (approximately -170◦C).

Why do batteries go flat?

A battery stores chemical potential energy. When it is connected in a circuit, a chemical reaction
takes place inside the battery which converts chemical potential energy to electrical energy
which powers the electrons to move through the circuit. All the circuit elements (such as
the conducting leads, resistors and lightbulbs) have some resistance to the flow of charge and
convert the electrical energy to heat and, in the case of the lightbulb, light. Since energy is always
conserved, the battery goes flat when all its chemical potential energy has been converted into
other forms of energy.

18.4.2 Resistors in electric circuits

It is important to understand what effect adding resistors to a circuit has on the total resistance
of a circuit and on the current that can flow in the circuit.

Resistors in series

When we add resistors in series to a circuit, we increase the resistance to the flow of current.
There is only one path that the current can flow down and the current is the same at all places
in the series circuit. Take a look at the diagram below: On the left there is a circuit with a single
resistor and a battery. No matter where we measure the current, it is the same in a series circuit.
On the right, we have added a second resistor in series to the circuit. The total resistance of
the circuit has increased and you can see from the reading on the ammeter that the current in
the circuit has decreased.

V = 2 V

R = 2 Ω

I = 0.67 A

Adding a resistor to the circuit

increases the total resistance

A

A

R = 1 Ω

I = 0.67 A

V = 2 V

R = 2 Ω

I = 1 A

The current in a series circuit
is the same everywhere

A

A

I = 1 A

(the current is
smaller)

smaller)
(the current is
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Resistors in parallel

In contrast to the series case, when we add resistors in parallel, we create more paths along
which current can flow. By doing this we decrease the total resistance of the circuit!

Take a look at the diagram below. On the left we have the same circuit as in the previous
diagram with a battery and a resistor. The ammeter shows a current of 1 ampere. On the right
we have added a second resistor in parallel to the first resistor. This has increased the number
of paths (branches) the charge can take through the circuit - the total resistance has decreased.
You can see that the current in the circuit has increased. Also notice that the current in the
different branches can be different.

Adding a resistor to the circuit in
parallel decreases the total resistance

V = 2 V

R = 2 Ω

I = 1 AA

V = 2 V

R = 2 Ω

I = 3 AA

R = 1 Ω

A

A

I = 1 A

I = 2 A

The current
is bigger

Exercise: Resistance

1. What is the unit of resistance called and what is its symbol?

2. Explain what happens to the total resistance of a circuit when resistors are
added in series?

3. Explain what happens to the total resistance of a circuit when resistors are
added in parallel?

4. Why do batteries go flat?

18.5 Instruments to Measure voltage, current and resis-
tance

As we have seen in previous sections, an electric circuit is made up of a number of different
components such as batteries, resistors and light bulbs. There are devices to measure the
properties of these components. These devices are called meters.

For example, one may be interested in measuring the amount of current flowing through a circuit
using an ammeter or measuring the voltage provided by a battery using a voltmeter. In this
section we will discuss the practical usage of voltmeters, ammeters, and ohmmeters.
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V

Figure 18.3: A voltmeter should be connected in parallel in a circuit.

18.5.1 Voltmeter

A voltmeter is an instrument for measuring the voltage between two points in an electric circuit.
In analogy with a water circuit, a voltmeter is like a meter designed to measure pressure difference.
Since one is interested in measuring the voltage between two points in a circuit, a voltmeter
must be connected in parallel with the portion of the circuit on which the measurement is made.

Figure 18.3 shows a voltmeter connected in parallel with a battery. One lead of the voltmeter is
connected to one end of the battery and the other lead is connected to the opposite end. The
voltmeter may also be used to measure the voltage across a resistor or any other component of
a circuit that has a voltage drop.

18.5.2 Ammeter

An ammeter is an instrument used to measure the flow of electric current in a circuit. Since one
is interested in measuring the current flowing through a circuit component, the ammeter must
be connected in series with the measured circuit component (Figure 18.4).

A

Figure 18.4: An ammeter should be connected in series in a circuit.

18.5.3 Ohmmeter

An ohmmeter is an instrument for measuring electrical resistance. The basic ohmmeter can
function much like an ammeter. The ohmmeter works by suppling a constant voltage to the
resistor and measuring the current flowing through it. The measured current is then converted
into a corresponding resistance reading through Ohm’s Law. Ohmmeters only function correctly
when measuring resistance over a component that is not being powered by a voltage or current
source. In other words, you cannot measure the resistance of a component that is already
connected to a live circuit. This is because the ohmmeter’s accurate indication depends only
on its own source of voltage. The presence of any other voltage across the measured circuit
component interferes with the ohmmeter’s operation. Figure 18.5 shows an ohmmeter connected
with a resistor.

18.5.4 Meters Impact on Circuit

A good quality meter used correctly will not significantly change the values it is used to measure.
This means that an ammeter has very low resistance to not slow down the flow of charge. A
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Ω

Figure 18.5: An ohmmeter should be used when there are no voltages present in the circuit.

voltmeter has a very high resistance so that it does not add another parallel pathway to the
circuit for the charge to flow along.

Activity :: Investigation : Using meters
If possible, connect meters in circuits to get used to the use of meters to measure

electrical quantities. If the meters have more than one scale, always connect to the
largest scale first so that the meter will not be damaged by having to measure
values that exceed its limits.

The table below summarises the use of each measuring instrument that we discussed and the
way it should be connected to a circuit component.

Instrument Measured Quantity Proper Connection

Voltmeter Voltage In Parallel
Ammeter Current In Series
Ohmmeter Resistance Only with Resistor

18.6 Exercises - Electric circuits

1. Write definitions for each of the following:

1.1 resistor

1.2 coulomb

1.3 voltmeter

2. Draw a circuit diagram which consists of the following components:

2.1 2 batteries in parallel

2.2 an open switch

2.3 2 resistors in parallel

2.4 an ammeter measuring total current

2.5 a voltmeter measuring potential difference across one of the parallel resistors

3. Complete the table below:

Quantity Symbol Unit of meaurement Symbol of unit

e.g. Distance e.g. d e.g. kilometer e.g. km
Resistance
Current

Potential difference

334



CHAPTER 18. ELECTRIC CIRCUITS - GRADE 10 18.6

4. [SC 2003/11] The emf of a battery can best be explained as the . . .

4.1 rate of energy delivered per unit current

4.2 rate at which charge is delivered

4.3 rate at which energy is delivered

4.4 charge per unit of energy delivered by the battery

5. [IEB 2002/11 HG1] Which of the following is the correct definition of the emf of a battery?

5.1 It is the product of current and the external resistance of the circuit.

5.2 It is a measure of the cell’s ability to conduct an electric current.

5.3 It is equal to the “lost volts” in the internal resistance of the circuit.

5.4 It is the power supplied by the battery per unit current passing through the battery.

6. [IEB 2005/11 HG] Three identical light bulbs A, B and C are connected in an electric
circuit as shown in the diagram below.

A

b b
S

CB

6.1 How bright is bulb A compared to B and C?

6.2 How bright are the bulbs after switch S has been opened?

6.3 How do the currents in bulbs A and B change when switch S is opened?

Current in A Current in B

(a) decreases increases
(b) decreases decreases
(c) increases increases
(d) increases decreases

7. [IEB 2004/11 HG1] When a current I is maintained in a conductor for a time of t, how
many electrons with charge e pass any cross-section of the conductor per second?

7.1 It

7.2 It/e

7.3 Ite

7.4 e/It
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Appendix A

GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful doc-
ument “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or non-commercially. Secondar-
ily, this License preserves for the author and publisher a way to get credit for their work, while
not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction or
reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.
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The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LATEX input format, SGML or XML using a publicly available DTD and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-commercially,
provided that this License, the copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other conditions whatsoever
to those of this License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may accept compensation
in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section A.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
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you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of
the Document, free of added material. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections A and A above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

2. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they
release you from this requirement.

3. State on the Title page the name of the publisher of the Modified Version, as the publisher.

4. Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

6. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

8. Include an unaltered copy of this License.

9. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.
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10. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

11. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

13. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

14. Do not re-title any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

15. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties–for example, statements of peer review or that the
text has been approved by an organisation as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section A above for modified versions, provided that you include in the combi-
nation all of the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and that you preserve all
their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Ac-
knowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.
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COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section A is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Doc-
ument under the terms of section A. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License, and all the license notices in the Document, and any War-
ranty Disclaimers, provided that you also include the original English version of this License and
the original versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section A) to Preserve its Title (section A) will typically require changing the actual
title.

TERMINATION

You may not copy, modify, sub-license, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sub-license or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
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Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST,
and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.
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